Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease
Reexamination Certificate
1999-10-28
2002-03-19
Achutamurthy, Ponnathapu (Department: 1652)
Chemistry: molecular biology and microbiology
Enzyme , proenzyme; compositions thereof; process for...
Transferase other than ribonuclease
C435S183000, C435S252330, C435S320100, C536S023200
Reexamination Certificate
active
06358720
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a useful serine/threonine protein kinase, a DNA encoding the protein kinase, a vector comprising the DNA, a host harboring the vector, and an antibody that binds to the protein kinase.
BACKGROUND ART
Protein kinase is an enzyme that phosphorylates serine, threonine, or tyrosine residues of substrate proteins, and numerous protein kinase families are known. It is known that protein kinase controls various biological phenomena by regulating the intracellular signal transduction system through protein phosphorylation (Hunter, T., A thousand and one protein kinases, Cell, 50:823-829, 1987).
One of a group of nematode (
C. elegans
) mutants (uncoordinated), “unc-51,” causes movement disorder and a responsible gene “UNC-51 ” found in unc-51 reportedly encodes a novel serine/threonine protein kinase (Ogura, K. et al.,
Caenorhabditis elegans
unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase, Genes Dev., 8:2389-2400, 1994). The result of tissue staining confirmed that the unc-51 mutant has axonal elongation disorder, and the UNC-51 kinase gene was thought to be essential for axonal elongation (Ogura, K. et al.,
Caenorhabditis elegans
unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase, Genes Dev., 8:2389-2400, 1994).
The mechanism of axonal biosynthesis in mammals has not been revealed yet at the molecular level.
C. elegans
is an excellent experimental model for axonal biosynthesis, and the involvement of similar molecules in both mammals and
C. elegans
has been suggested. The isolation of mammalian molecule having the similar function as the UNC-51 kinase of the nematode has been desired.
DISCLOSURE OF THE INVENTION
An objective of the present invention is to provide a mammalian serine/threonine protein kinase involved in axonal formation.
As a result of research to achieve the above objective, the inventors successfully isolated a mouse cDNA encoding a protein comprising a serine/threonine protein kinase region by effecting PCR using a synthetic DNA corresponding to the kinase-conserved region as a primer and a rat cDNA as a template, and screening a mouse cDNA library using the DNA fragment thus obtained as a probe. The multiple human and mouse cDNAs having the similar structure to the isolated mouse cDNA were successfully isolated based on the sequence of the isolated mouse cDNA. The inventors synthesized an antisense DNA against the isolated mouse cDNA, and its effect on a nerve cell was studied to confirm that the antisense DNA inhibits axonal elongation.
The present invention relates to a mammalian serine/threonine protein kinase involved in axonal formation. More specifically, the invention relates to:
(1) a protein comprising the amino acid sequence set forth in SEQ ID NO: 2, 4, 14, 16, or 21, or a protein comprising the amino acid sequence set forth in SEQ ID NO: 2, 4, 14, 16, or 21, in which one or more amino acids are substituted, deleted, or added, wherein said protein has activity of serine/threonine protein kinase;
(2) a protein encoded by a DNA hybridizing with a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1, 3, 13, 15, or 20, wherein said protein has the activity of serine/threonine protein kinase;
(3) a protein comprising the amino acid sequence set forth in SEQ ID NO: 2, 4, 14, 16, or 21, or a protein comprising the amino acid sequence set forth in SEQ ID NO: 2, 4, 14, 16, or 21, in which one or more amino acids are substituted, deleted, or added, wherein said protein induces axonal elongation;
(4) a protein encoded by a DNA hybridizing with a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1, 3, 13, 15, or 20, wherein said protein induces axonal elongation;
(5) the protein of (2) or (4), wherein said protein is derived from a mammal;
(6) a DNA encoding any one of the proteins of (1) to (5);
(7) an antisense DNA against a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1, 3, 13, 15, or 20 or a part thereof, wherein said DNA or a part thereof-inhibits axonal elongation;
(8) a vector comprising the DNA of (6) or (7);
(9) a host cell harboring the vector of (8); and
(10) an antibody that binds to the protein of (1) or (2).
A “protein” used herein includes a peptide with a short amino acid sequence.
The present invention relates to a mammal-derived serine/threonine protein kinase involved in axonal formation. The inventors isolated a mouse cDNA highly homologous to the kinase region of UNC-51, a serine/threonine kinase that induces axonal elongation in a nematode,
C. elegans
(Ogura, K. et al.,
Caenorhabditis elegans
unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase, Genes Dev., 8:2389-2400, 1994) (this clone was named “MUK1”). The nucleotide sequence of the MUK1 cDNA is shown in SEQ ID NO: 1. The inventors also isolated four cDNAs comprising the similar structure to the MUK1 cDNA by screening a human cerebellum library, a mouse cerebellum library, a human NH-2 cell library, and a mouse brain library, based on the sequence of MUK1. The isolated four cDNAs were considered to be a human counterpart (SEQ ID NO: 3), a splicing valiant (SEQ ID NO: 13), a human homologue (SEQ ID NO: 15), and a family gene (SEQ ID NO: 20) (named “MUK2”) of MUK1 considering their structural characteristics. The analysis of structures of the proteins encoded by these isolated cDNAs confirmed that all the proteins possess the kinase-conserved region. This fact indicates that those proteins would be involved in signal transduction through phosphorylation of other proteins. When an antisense DNA against the MUK1 cDNA (SEQ ID NO: 8) was added to Neuro2A cells derived from neuroblast cells, axonal elongation in the cells was inhibited. Those proteins may thus be involved in axonal elongation by signal transduction through phosphorylation of other proteins.
Among these proteins, the protein (SEQ ID NO: 4) encoded by cDNA set forth in SEQ ID NO: 3 is a partial sequence comprising the sequence corresponding to the serine/threonine protein kinase region. A protein encoded by the full-length DNA can be obtained by methods well known in the art. For example, the full-length DNA is isolated by screening a library with a partial sequence of the DNA of SEQ ID NO: 3 as probe or by PCR (Current protocols in Molecular Biology ed. by Ausubel et al. (1987) published by John Wiley & Sons, Section 6.1-6.4), the isolated full-length DNA is introduced into cultured cells such as COS cells to express the protein in the cells (Current Protocols in Molecular Biology, ed. by Ausubel et al. (1987) published by John Wiley & Sons, Section 9.1-9.9), then the protein is purified. The thus-isolated protein is also included in the protein of this invention.
Functional equivalents to the protein set forth in SEQ ID NO: 2, 4, 14, 16, or 21 can be obtained by substituting amino acid residue(s) of these proteins using usually used methods such as site-directed mutagenesis (Current Protocols in Molecular Biology, ed. by Ausubel et al. (1987) published by John Wiley & Sons, Section 8.1-8.5). This invention also includes proteins functionally equivalent to the protein of SEQ ID NO: 2, 4, 14, 16, or 21, in which one or more amino acids are substituted, deleted, or added. Alternatively, functionally equivalent proteins to the protein of SEQ ID NO: 2, 4, 14, 16, or 21 can be obtained by isolating DNAs highly homologous to DNA sequences (or a part thereof) of SEQ ID NO: 1, 3, 13, 15, and 20, using the known hybridization technique (Current Protocols in Molecular Biology, ed. by Ausubel et al. (1987) published by John Wiley & Sons, Sections 6.3, 6.4). The protein of the present invention includes such proteins functionally equivalent to the proteins of SEQ ID NO: 2, 4, 14, 16, and 21, encoded by a DNA hybridizing with the DNA of SEQ ID NO: 1, 3, 13, 15, or 20. The functionally equivalent proteins obtained by the hybridization technique are highly homologous in the amino acid sequence to the protein of SEQ ID NO: 2, 4, 14, 16, or 21 in gen
Muramatsu Masaaki
Noguchi Teruhisa
Shirasawa Takuji
Tokumitsu Hiroshi
Achutamurthy Ponnathapu
Fish & Richardon P.C.
Fronda Christian L.
Helix Research Institute
LandOfFree
Serine/theonine protein kinase does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Serine/theonine protein kinase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Serine/theonine protein kinase will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2826960