Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Patent
1999-04-26
2000-04-04
Elliott, George C.
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
536 231, 536 243, C12Q 168, C07H 2104, C12N 1511
Patent
active
060460067
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for detecting fungal cells in clinical material.
Methods for detecting fungal cells in clinical material are of great interest because, especially in recent years, fungal species have acquired considerable importance as significant nosocomial pathogens, in particular for immunosuppressed patients. If fungal infections are not recognized in time in such patients, they propagate in the patient's body and result in a high mortality rate. Treatment success can be improved only by timely diagnosis.
2. Related Prior Art
The standard methods known for the detection of fungal infections, which are based on the culturing of isolated fungi, are complex and time-consuming. On the other hand, fungal infections can be detected sensitively and promptly using new techniques based on molecular biology methods. These methods require, however, the ability to efficiently extract fungus-specific nucleic acids from clinical material. In order to identify, from these extracted nucleic acids, the fungal species responsible for the infection, specific sequences of different pathogenic fungal species must be known. This requires differentiating among the various fungal species, since the particular therapy depends on the individual fungal infection.
With this background, a method has been developed with which fungal DNA can be extracted from patient material, the fungal DNA can be analyzed, and various fungal species can be identified on the basis of the extracted DNA. This method is described in DE Patent Application 195 30 336.9 as follows:
First the fungal DNA is extracted from the patient's whole blood. This is done by first isolating fungal cells from blood cells. Then the fungal cells are lysed and their DNA is purified from the lysate. Fungus-specific DNA segments from the fungal cell DNA thus obtained is amplified in a polymerase chain reaction (PCR). This polymerase chain reaction is performed with two primers which amplify a region, comprising approximately 500 nucleotides, from the gene for 18ssu rRNA. The primers are selected so as to amplify only the corresponding gene region from fungi, but not gene regions from other organisms, for example the patient's own body cells. The sequences of these primers are listed in the attached Sequence Listing as SEQ ID No. 1 and 2.
A DNA fragment is thus amplified in the polymerase chain reaction only if a fungal infection is present. Considered in and of itself, the PCR thus serves to detect the existence of an infection with pathogenic fungi.
In order then to differentiate among different fungal species, the amplified 500-base-pair fragment is hybridized with one or more of a total of six probes. Each probe is specific for one fungal species. According to DE Patent Application 195 30 336.9, specific probes are indicated for a total of five Candida species and the genus Aspergillus. The probes are also listed in the Sequence Listing attached hereto, as SEQ ID No. 3 through 8.
The fungal genera Candida and Aspergillus are those by far most often involved in nosocomial infections. Less-common fungal species, for which so far no detection methods are available, are nevertheless also gaining in clinical significance.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present application to provide for species-specific probes for the hitherto unknown rRNA gene region of uncommon fungal species. These probes have already been successfully used experimentally for the detection of the uncommon fungal species.
The sequences of these probes are listed in the attached Sequence Listing as SEQ ID No. 9, 10, 11, and 12.
The probe with the nucleotide sequence SEQ ID No. 9 is used to detect the fungal species Pneumocystis carinii. The probe with the nucleotide sequence SEQ ID No. 10 is used to detect the species Malassezia furfur. The letter K at position 21 stands for "G or T"; i.e. there are strains which require the G base here, and strains which require the T base here. The probe with th
REFERENCES:
Kobayashi, et al., Simple detection f the 5S ribosomal RNA of Pneumocystis carinii using in situ hybridisation, Journal of Clinical Pathology, 49(9) (1996) 712-716. (abstract).
Shah, et al., Diversity of host species and strains of Pneumocystis carini is based on rRNA sequences, Clinical and Diagnostic Laboratory Immunology, 3(1) (1996) 119-127. (abstract).
De Luca, et al., Variable efficiency of three primer pairs for the diagnosis of Pneumocystis carinii pneumonia by the polymerase chain reaction, Molecular and Cellular Probes, 9(5) (1995) 333-340. (abstract).
Lu, et al., Typing of Pneumocystis carinii strains with type-specific oligonucleotide probes derived from nucleotide sequences of internal transcribed spacers of Rrna genes, Journal of Clinical Microbiology, 33(11) (1995) 2973-2977. (abstract).
Mazars, et al., Polymorphism of the thymidylate synthase gene of Pneumocystis carinii from different host species, Journal of Eukaryotic Microbiology, 42(1) (1995) 26-32. (abstract).
van Belkum, et al., Monitoring spread of Malassezia infections in a neonatal intensive care unit by PCR-mediated genetic typing, Journal of Clinical Microbiology, 32(10) (1994) 2528-2532. (abstract).
Borensztein, et al., An alternative to DNA extraction for the diagnosis of Pneumocystis carinii pneumonia by polymerase chain reaction using a new oligonucleotide probe, Molecular and Cellular Probes, 6(5) (1992) 361-365 (abstract).
Peters, et al., Quantification of the detection of Pneumocystis carinii by DNA amplification, Molecular and Cellular Probes, 6(2) (192) 115-117 (abstract).
Wakefield, et al., Detection of Pneumocystis cariniiwith DNA amplification, Lancet, 336 (8713) (1990) 451-453. (abstract).
XP002046318--Lu, et al., Comparison of Six Different PCR Methods for Detection of Pneumocystis carinii, Journal of Clinical Microbiology, Oct. 1995, pp. 2785-2788.
XP002045921--Edman, et al., Ribosomal RNA sequence shows Pneumocystis carinii to be member of the Fungi, Letters to Nature, vol. 334, Aug. 11, 1998, pp. 519-522.
XP002046319--Belkum, et al., Monitoring Spread of Malassezia Infections in a Neonatal Intensive Care Unit by PCR-Mediated Genetic Typing, Journal of Clinical Microbiology, Oct. 1994, pp. 2528-2532.
XP002045920--De Peer, et al., Evolution of Basidiomycetous Yeasts as Deduced from Small Ribosomal Subunit RNA Sequences, System. Appl. Microbiol., 15, pp. 250-258 (1992).
XP002046483--Glenn, et al., Molecular phylogeny of Acremonium and its taxoniomic implications, Mycologia, 88(3), 1996, pp. 369-383.
XP002046484--Spatafora, et al., Molecular Systematics of Unitunicate Perithecial Ascomycetes: The Clavicipitales-Hypocreales Connection, Mycolgia, 85(6), 1993, pp. 912-922.
XP002046485--Spatafora, et al., The Polyphyletic origins of ophiostomatoid fungi, Mycol. Res 98 (1) 1-9 (1994).
XP002046486--Makimura, et al., Detection of a wide range of medically important fungi by the polymerase chain reaction, J. Med. Microbiol., vol. 40 (1994), pp. 358-364.
XP002046322--Spatafora, et al., Petriella setifera small subunit rRNA, partial sequence, GenBank U32421, Mycol. Res. 98:1-9 (1994).
XP002046320--Glenn, et al., Myriogenospora atramentosa 18S, partial sequence, GenBank U44115, Mycologia 88:369-383 (1996).
XP002046321--Spatafora, et al., Balsansia sclerotica small subunit rRNA, partial sequence, GenBank U32399, Mycologia 85:912-922 (1993).
Einsele Hermann
Loffler Jurgen
Eberhard-Karls-Universitat
Elliott George C.
Moore Steven J.
Schmidt Melissa
Tubingen Universitatsklinikum
LandOfFree
Sequential hybridization of fungal cell DNA and method for the d does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sequential hybridization of fungal cell DNA and method for the d, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sequential hybridization of fungal cell DNA and method for the d will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-363932