Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
2001-06-12
2004-07-13
Martinell, James (Department: 1631)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S005000, C435S320100, C536S023100, C536S023700
Reexamination Certificate
active
06762024
ABSTRACT:
The present invention relates to new nucleotide and amino acid sequences corresponding to the coding region of a new type 2 subtype 2d, type-specific sequences corresponding to HCV type 3a, to new sequences corresponding to the coding region of a new subtype 3c, and to new sequences corresponding to the coding region of HCV type 4 and type 5 subtype 5a; a process for preparing them, and their use for diagnosis, prophylaxis and therapy.
The technical problem underlying the present invention is to provide new type-specific sequences of the Core, the E1, the F2, the NS3, the NS4 and the NS5 regions of HCV type 4 and type 5, as well as of new variants of HCV type 2 and 3. These new HCV sequences are useful to diagnose the presence of type 2 and/or type 3 and/or type 4 and/or type 5 HCV genotypes in a biological sample. Moreover, the availability of these new type-specific sequences can increase the overall sensitivity of HCV detection and should also prove to be useful for therapeutic purposes.
Hepatitis C viruses (HCV) have been found to be the major cause of non-A, non-B hepatitis. The sequences of cDNA clones covering the complete genome of several prototype isolates have been determined (Kato et al., 1990; Choo et al., 1991; Okamoto et al., 1991; Okamoto et al., 1992). Comparison of these isolates shows that the variability in nucleotide sequences can be used to distinguish at least 2 different genotypes, type 1 (HCV-J and HCV-1) and type 2 (HC-J6 and HC-J8), with an average homology of about 68%. Within each type, at least two subtypes exist (e.g. represented by HCV-1 and HCV-J), having an average homology of about 79%. HCV genomes belonging to the same subtype show average homologies of more than 90% (Okamoto et al., 1992). However, the partial nucleotide sequence of the NS5 region of the HCV-T isolates showed at most 67% homology with the previously published sequences, indicating the existence of a yet another HCV type (Mori et al., 1992). Pans of the 5′ untranslated region (UR), core, NS3, and NS5 regions of this type 3 have been published, further establishing the similar evolutionary distances between the 3 major genotypes and their subtypes (Chan et al., 1992).
The identification of type 3 genotypes in clinical samples can be achieved by means of PCR with type-specific primers for the NS5 region. However, the degree to which this will be successful is largely dependent on sequence variability and on the virus titer present in the serum. Therefore, routine PCR in the open reading frame, especially for type 3 and the new type 4 and S described in the present invention and/or group V (Cha et al., 1992) gels can be predicted to be unsuccessful. A new typing system (LiPA), based on v on in the highly conserved 5′ UR, proved to be more usefull because the 5 major HCV genotypes and their subtypes can be determined (Stuyver et al., 1993). The selection of high-titer isolates enables to obtain PCR fragments for cloning with only 2 primers, while nested PCR requires that 4 primers match the unknown sequences of the new type 3, 4 and 5 genotypes.
New sequences of the 5′ untranslated region (5′UR) have been listed by Bukh et al. (1992). For some of these, the E1 region has recently been described (Bukh et al., 1993). Isolates with similar sequences in the 5′UR to a group of isolates including DK12 and HK10 described by Bukh et al. (1992) and E-b1 to E-b8 described and classified as type 3 by Chan et al. (1991), have been reported and described in the 5′UR, the carboxyterminal part of E1, and in the NS5 region as group IV by Cha et al. (1992; WO 92/19743), and have also been described in the 5′UR for isolate BR56 and classified as type 3 by the inventors of tis application (Stuyver et al., 1993).
The aim of the present invention is to provide new HCV nucleotide and amino acid sequences enabling the detection of HCV infection.
Another aim of the present infection is to provide new nucleotide and amino acid HCV sequences enabling the classification of infected biological fluids into different serological groups unambiguously linked to types and subtypes at the genome level.
Another aim of the present invention is to provide new nucleotide and amino acid HCV sequences ameliorating the overall HCV detection rate.
Another aim of the present invention is to provide new HCV sequences, useful for the design of HCV vaccine compositions.
Another aim of the present invention is to provide a pharmaceutical composition consisting of antibodies raised against the polypeptides encoded by these new HCV sequences, for therapy or diagnosis.
The present invention relates more particularly to a composition comprising or consisting of at least one polynucleic acid containing at least 5, and preferably 8 or more contiguous nucleotides selected from at least one of the following HCV sequences:
an HCV type 3 genomic sequence, more particularly in any of the following regions:
the region spanning positions 417 to 957 of the Core/E1 region of HCV subtype 3a,
the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3,
the region spading positions 4892 to 5292 of the NS3/4 region of HCV type 3,
the region spanning positions 8023 to 8235 of the NS5 region of the BR36 subgroup of HCV subtype 3a,
an HCV subtype 3c genomic sequence,
more particularly the coding regions of the above-specified regions;
an HCV subtype 2d genomic sequence, more particularly the coding region of HCV subtype 2d;
an HCV type 4 genomic sequence, more particularly the coding region, more particularly the coding region of subtypes 4a, 4e, 4f, 4g, 4h, 4i, and 4j,
an HCV hype 5 genomic sequence, more particularly the coding region of HCV type 5, more particularly the regions encoding Core, E1, E2, NS3, and NS4
with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV (type 1, type 2, and type 3) polynucleic acid sequences in the above-indicated regions, or the complement thereof.
It is to be noted that the nucleotide difference in the polynucleic acids of the invention may involve or not an amino acid difference in the corresponding amino acid sequences coded by said polynucleic acids.
According to a preferred embodiment, the present invention relates to a composition comprising or containing at least one polynucleic acid encoding an HCV polyprotein, with said polynucleic acid containing at least 5, preferably at least 8 nucleotides corresponding to at least part of an HCV nucleotide sequence encoding an HCV polyprotein, and with said HCV polyprotein containing in its sequence at least one of the following amino acid residues L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, V134, G142, I144, E152, A157, V158, P165, S177 or Y177, 1178, V180 or E180 or F182, R184, I186, H187, T189, A190, S191 or G191, Q192 or L192 or 1192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, L103 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235 or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, 1284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or 1297 or Q297, A299 or Q299, N303 or T303, M308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, I387, S392, I399, F402, I1403, R40S, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N
Maertens Geert
Stuyver Lieven
Innogenetics S.A.
Martinell James
Nixon & Vanderhye P.C.
LandOfFree
Sequences of hepatitis C virus genotypes and their use as... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sequences of hepatitis C virus genotypes and their use as..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sequences of hepatitis C virus genotypes and their use as... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3198690