Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...
Reexamination Certificate
1999-04-08
2001-03-13
Schwartzman, Robert A. (Department: 1636)
Chemistry: molecular biology and microbiology
Process of mutation, cell fusion, or genetic modification
Introduction of a polynucleotide molecule into or...
C435S455000, C435S471000
Reexamination Certificate
active
06200812
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to methods for targeting an exogenous polynucleotide or exogenous complementary polynucleotide pair to a predetermined endogenous DNA target sequence in a target cell by homologous pairing, particularly for altering an endogenous DNA sequence, such as a chromosomal DNA sequence, typically by targeted homologous recombination. In certain embodiments, the invention relates to methods for targeting an exogenous polynucleotide having a linked chemical substituent to a predetermined endogenous DNA sequence in a metabolically active target cell, generating a DNA sequence-specific targeting of one or more chemical substituents in a metabolically active living target cell, generally for purposes of altering a predetermined endogenous DNA sequence in the cell. The invention also relates to compositions and formulations that contain exogenous targeting polynucleotides, complementary pairs of exogenous targeting polynucleotides, chemical substituents of such polynucleotides, and recombinase proteins, including recombinosome proteins and other targeting proteins, used in the methods of the invention.
BACKGROUND
Homologous recombination (or general recombination) is defined as the exchange of homologous segments anywhere along a length of two DNA molecules. An essential feature of general recombination is that the enzymes responsible for the recombination event can presumably use any pair of homologous sequences as substrates, although some types of sequence may be favored over others. Both genetic and cytological studies have indicated that such a crossing-over process occurs between pairs of homologous chromosomes during meiosis in higher organisms.
Alternatively, in site-specific recombination, exchange occurs at a specific site, as in the integration of phage &lgr; into the
E. coli
chromosome and the excision of &lgr; DNA from it. Site-specific recombination involves specific inverted repeat sequences; e.g. the Cre-loxP and FLP-FRT systems. Within these sequences there is only a short stretch of homology necessary for the recombination event, but not sufficient for it. The enzymes involved in this event generally cannot recombine other pairs of homologous (or nonhomologous) sequences, but act specifically.
Although both site-specific recombination and homologous recombination are useful mechanisms for genetic engineering of DNA sequences, targeted homologous recombination provides a basis for targeting and altering essentially any desired sequence in a duplex DNA molecule, such as targeting a DNA sequence in a chromosome for replacement by another sequence. Site-specific recombination has been proposed as one method to integrate transfected DNA at chromosomal locations having specific recognition sites (O'Gorman et al. (1991)
Science
251: 1351; Onouchi et al. (1991)
Nucleic Acids Res.
19: 6373). Unfortunately, since this approach requires the presence of specific target sequences and recombinases, its utility for targeting recombination events at any particular chromosomal location is severely limited in comparison to targeted general recombination.
For these reasons and others, targeted homologous recombination has been proposed for treating human genetic diseases. Human genetic diseases include (1) classical human genetic diseases wherein a disease allele having a mutant genetic lesion is inherited from a parent (e.g., adenosine deaminase deficiency, sickle cell anemia, thalassemias), (2) complex genetic diseases like cancer, where the pathological state generally results from one or more specific inherited or acquired mutations, and (3) acquired genetic disease, such as an integrated provirus (e.g., hepatitis B virus).
Homologous recombination has also been used to create transgenic animals. Transgenic animals are organisms that contain stably integrated copies of genes or gene constructs derived from another species in the chromosome of the transgenic animal. These animals can be generated by introducing cloned DNA constructs of the foreign genes into totipotent cells by a variety of methods, including homologous recombination. Animals that develop from genetically altered totipotent cells contain the foreign gene in all somatic cells and also in germ-line cells if the foreign gene was integrated into the genome of the recipient cell before the first cell division. Currently methods for producing transgenics have been performed on totipotent embryonic stem cells (ES) and with fertilized zygotes. ES cells have an advantage in that large numbers of cells can be manipulated easily by homologous recombination in vitro before they are used to generate transgenics. Currently, however, only embryonic stem cells from mice have been characterized as contributing to the germ line. Alternatively, DNA can also be introduced into fertilized oocytes by micro-injection into pronuclei which are then transferred into the uterus of a pseudo-pregnant recipient animal to develop to term. However because current homologous recombination methods are inefficient and it is not logistically possible to manipulate large numbers of fertilized zygotes, transgenic animals produced by zygote microinjection are generally the result of random integration (not targeted) of the gene construct. A few cases of relatively inefficient homologous recombination in mouse fertilized zygotes have been reported, however these methods have been only been applied to a few specific target genes (Brinster et al. (1989) PNAS 86: 7087; Susulic et al. (1995) JBC 49: 29483; Zimmer and Gruss (1989) Nature 338: 150] and the general utility of homologous recombination in zygotes for any desired target gene has not been observed.
Commercial applications to produce transgenic animals by homologous recombination include 1) animal models to study gene function; 2) animal models that mimic human disease; 3) animals that produce therapeutic proteins from a known, pre-designated stable site in the chromosome; 4) animals that produce milk with superior nutritional value; 5) animal livestock with superior qualities, including disease and pathogen resistance; and 6) genetically altered animals that produce organs that are suitable for xenotransplantation. However as stated above, current methods for homologous recombination are generally inefficient and since ES cells which contribute to the germ line have only been identified for mice, homologous recombination has not been enabled for producing transgenic animals in any other species other than two strains of mice. Thus, current methods of targeted homologous recombination are inefficient and produce desired homologous recombinants only rarely, necessitating complex cell selection schemes to identify and isolate correctly targeted recombinants.
A primary step in homologous recombination is DNA strand exchange, which involves a pairing of a DNA duplex with at least one DNA strand containing a complementary sequence to form an intermediate recombination structure containing heteroduplex DNA (see, Radding, C. M. (1982)
Ann. Rev. Genet.
16: 405; U.S. Pat. No. 4,888,274). The heteroduplex DNA may take several forms, including a three DNA strand containing triplex form wherein a single complementary strand invades the DNA duplex (Hsieh et al. (1990)
Genes and Development
4: 1951; Rao et al., (1991) PNAS 88:2984)) and, when two complementary DNA strands pair with a DNA duplex, a classical Holliday recombination joint or chi structure (Holliday, R. (1964)
Genet. Res.
5: 282) may form, or a double-D loop (“Diagnostic Applications of Double-D Loop Formation” U.S. Ser. No. 07/755,462, filed Sep. 4, 1991, which is incorporated herein by reference). Once formed, a heteroduplex structure may be resolved by strand breakage and exchange, so that all or a portion of an invading DNA strand is spliced into a recipient DNA duplex, adding or replacing a segment of the recipient DNA duplex. Alternatively, a heteroduplex structure may result in gene conversion, wherein a sequence of an invading strand is transferred to a recipient DNA duplex by repai
Pati Sushma
Zarling David A.
Flehr Hohbach Test Albritton & Herbert LLP
Schwartzman Robert A.
SRI - International
Trecartin Richard F.
LandOfFree
Sequence alterations using homologous recombination does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sequence alterations using homologous recombination, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sequence alterations using homologous recombination will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2547451