Separator sheet laminate for use in the manufacture of...

Stock material or miscellaneous articles – All metal or with adjacent metals – Foil or filament smaller than 6 mils

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S606000, C428S612000, C428S626000, C428S652000, C428S677000, C428S687000, C428S198000, C428S201000, C428S926000

Reexamination Certificate

active

06355360

ABSTRACT:

STATMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains generally to the fabrication of multi-layered printed circuit boards, and more particularly to method for attaching copper and steel sheets for use in the manufacture of printed circuit boards, as well as to laminated copper/steel sheets fabricated according to the attachment method.
2. Description of the Background Art
Printed circuit board (PCB) lay-up panels are widely used in the electronics industry, and a number of approaches have been taken to laminate PCB lay-up panels. In early stages of development, PCB lay-up panels were laminated using presses similar to those used in the wood industry for laminating, for example, sheets of plywood. During manufacture, steam or electric power was used to heat hydraulic-driven presses to temperatures exceeding 350° F. The panel components in the presses were submitted to pressures between 300 psi and 500 psi at 350° F. for approximately one hour to achieve proper lamination. With the early methods, highly polished and precision ground stainless steel plates approximately 0.062 inches thick were used to separate each panel within a press opening. Typically, a T-304 full hard alloy or equivalent material was used for these 0.062 stainless steel separator plates. A regular problem, however, was that these stainless steel 0.062 separator plates required cleaning or scrubbing to remove debris after every use and periodically needed to be resurfaced to remove dents and scratches due to handling and use. Eventually, the plates had to be replaced.
During the late 1980's, the introduction of vacuum assisted presses permitted the use of lower pressures during the lamination cycle. The pressures used in vacuum assisted presses typically ranged from approximately 150 psi to 250 psi, as opposed to the 300 psi to 500 psi range used in the hydraulic steam driven or electric presses. With vacuum assisted presses, aluminum separator sheets ranging in thickness from 0.007 to 0.015 inches were tested and then used extensively. Test results published during that time indicated that thin aluminum separator plates far exceeded the performance of steel plates for laminating PCB panels. These thin aluminum separator sheets were discarded after the lamination process, thus eliminating the need for expensive steel plate cleaning and handling operations and the frequent and large capital investment needed to replace the steel plates.
The alloy used for aluminum separator plates is typically 3000 series (e.g. 3003, 3004, 3105 or equivalent) with a H19 hardness designation, which is identical to the alloy used to make aluminum beverage cans. The process using thin aluminum separator sheets along with low pressure from vacuum assisted presses has worked well for typical 4 layer to 6 layer PCB's with circuit lines of approximately 0.008 inches in width and approximately 0.008 inches apart. A typical configuration in a press opening would be a steel plate on top and bottom of the stack with thin aluminum sheets separating each PCB panel. The rate of production in these vacuum assisted presses increased to about 10-14 PCB panels per typical 1½ inch press opening from the 6 to 8 PCB panels achieved using 0.062 stainless steel sheets.
Technological advancements, however, have driven a need for PCBs to have denser circuitry. This means that circuits must have finer lines (less than 0.006 inches wide) and closer spacing between circuit lines (less than 0.006 inches). Denser surfaces on a PCB permit a higher quantity of electrical components to be mounted thereon, thus enabling faster information processing and greater miniaturization of electronic hardware. These greater technological demands have made the surface quality of the laminated circuit board panels even more critical. Problems such as surface roughness and image transfer that also previously existed, have now become critical issues that require resolution, since any minute bump on the surface of the aluminum sheet will be transferred to the top surface of the board necessitating scraping the board and reworking the PCB fabrication process.
To prevent and minimize scrap and rework due to image transfer and surface quality problems, almost every press configuration used today employs 0.062 stainless steel plates (usually T-304 or T-600 stainless steel) placed adjacent to the thin aluminum separator sheets in addition to on the top and bottom of the stack. Many press loads have at least three steel plates added to the lay-up, which then reduces the number of panels that can be laminated in each press cycle. Some of the lay-up configurations have both aluminum sheets and steel plates separating every panel in the press, with the aluminum separator sheets being discarded after the press cycle. This approach, however, has not completely cured the problem as it causes a decrease in the production rate of the press. Also, pits, dents and other surface imperfections due to the re-introduction of steel plates into the process are still causing scrap and rework of PCB panels. Moreover, many PCB fabricators have to purchase additional new 0.062 stainless steel plates and again install expensive plate cleaning and handling systems. Although the thin aluminum separator sheets are discarded after every press cycle, the steel plates must be cleaned before each use, adding additional operational steps and cost to the PCB fabrication process. To maintain production demands, fabricators must purchase additional vacuum presses, at a cost of approximately $250,000 to $1,000,000 per unit, to compensate for the loss of productivity due to the re-introduction of steel plates into the PCB fabrication process.
Today, fabricators are typically producing between 3 and 8 PCB panels on high technology “dense” boards and encounter more quality problems and higher costs. State of the art dense PCB's now require 2 separators including a 0.062 stainless steel plate and a thin sheet of aluminum. This is an expensive step backward to the beginning of the evolution of the PCB fabrication process.
Use of a thin piece of aluminum in a copper/aluminum laminate structure simply does not meet today's demanding requirements for high technology, dense PCB's. Such laminates suffer from a number of drawbacks that include the susceptibility to print through and image transfer, misregistration, blistering, warpage and delamination. In addition, these laminates exhibit unacceptable surface roughness.
Off contact printing often results from image transfer. This generally inhibits the adhesion of dry film and the ability to expose a one to one image on panels. As a result, such laminates are typically limited to the fabrication of four to six layer PCB's. In addition, shims are often required between every PCB panel. The use of shims adds significant cost to PCB manufacture. The shims must go through a labor intensive cleaning process between each use. Shims are very expensive and many PCB manufacturers have had to set aside space in their manufacturing facilities for shim cleaning.
Misregistration results from too much movement in the inner layers. This causes drill breakage and renders the PCB useless. Drill breakage also results from misregistration in high technology PCBs where small holes which are less 13 mils and as small as 4 mils are typical.
Blistering results from the uneven coefficient of thermal expansion exhibited by aluminum. The uneven CTE creates more hot spots that cause blistering. This problem may not become apparent for six months or more after fabrication and, therefore, may cause major system failures.
Surface roughness is also a problem with aluminum. The high surface roughness will cause off contact printing, broken drill bits, and loss of materials. The laminates are also susceptible to warpage, which renders them useless. And, delamination has been observed using the laminates at low pressure

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Separator sheet laminate for use in the manufacture of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Separator sheet laminate for use in the manufacture of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Separator sheet laminate for use in the manufacture of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2890242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.