Separator for a fish display tank

Animal husbandry – Aquatic animal culturing – Aquarium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C119S250000

Reexamination Certificate

active

06443099

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
This invention relates to aquatic animal culturing and display, and particularly to improvements in dividers or separator assemblies used to separate fish within an ornamental fish display tank or aquarium. The breeding and display of live fish within transparent tanks or aquariums is a popular way to add beauty, color, and movement to a home or office. To achieve a varied and interesting aquarium scene, aquarium hobbyists often prefer to display fish of different breeds, sizes and shapes within the same tank. They also typically provide ornaments, obstacles, and decorative backgrounds within the tanks. This variation of fish type and environment adds to the enjoyment of viewers, who are able to see varied types of fish swimming above, below, over and around both each other and the tank ornaments in a rich three-dimensional environment.
A known drawback to displaying fish of various sizes in the same tank is the natural tendency of larger fish to eat smaller fish. This is particularly a problem when newly hatched baby fish, or fry, are contained within the same tank as the mother fish and other larger fish. In such cases, the mother and/or the other larger fish will tend to cannibalize the fry. Also, certain types of fish are known to have aggressive tendencies and will attack other fish, injuring or killing them. For the tropical fish hobbyist, who may have spent large amounts of time and money acquiring and breeding fish, having prized pets devour or maim one another is undesirable. Fish hobbyists have therefore sought ways to keep hostile fish physically separate from other more docile fish while maintaining an interesting live display.
A number of potential solutions to the problem of separating incompatible fish within display tanks have arisen. These approaches include placing screens, panels, and or perforated boxes or cylinders within the tank to divide it into separate compartments. Unfortunately, use of such devices often restrict the movement and of the fish such that they can no longer swim above, below and around each other in a filly three-dimensional manner. Likewise, if opaque structures are used as tank dividers, they limit the permissible angles, areas, and opportunities for viewing the fish, which again detracts from the three-dimensional appearance of the aquatic environment. In addition, if the separator structure creates a completely enclosed compartment with a sealed top, the fish within it will not have access to the water surface, which is important for feeding. Furthermore, these systems often require that the divider elements themselves be mounted to the walls of the fish tank, making initial installation and removal for cleaning difficult. Also, many structures create a substantially watertight seal between the separated compartments, making it necessary to use multiple air pump units for oxygenating the water within each compartment. These shortcomings are addressed by the present invention.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to a transparent separator for use within a fish display tank that separates the tank into multiple, fully viewable compartments, or “aquatic regions,” which are in fluid communication with each other. A first group of fish (eg., hostile fish) confined within one of the aquatic regions is able to “visibly,” swim through areas that are surrounded by the aquatic region occupied by other (e.g., small or docile) fish, while remaining physically separated from those fish. The separator system disclosed thus allows groups of separated fish to swim above, beneath, beside, and around each other in a fully three-dimensional manner.
In accordance with the present invention, the separator comprises at least one rigid, transparent, hollow transit chamber, which has opposing mouth openings cut through its surface. Securely affixed to each of the mouth openings are rigid, transparent divider plates, which are oriented substantially vertically. Apertures are cut through the divider plates adjacent to and in correspondence with the mouth openings of the attached transit chamber(s). Thus, each transit chamber provides, a passageway through the separator that extends through the aperture of one divider plate, into the intervening transit chamber, and finally out through the opposite aperture of the other divider plate. The divider plates are oriented symmetrically to one another and are rigidly affixed to the transit chamber. The divider plates are sized such that when the separator is placed within a fish tank (with the transit chamber submerged beneath the tank's surface water level, and with the inner volume of the transit chamber filled with water), the divider plates rest stably on the floor of the tank. The top surfaces of the divider plates extend slightly above the surface water level of the tank. The outer dimensions of the separator assembly are smaller than the inner dimensions of the fish display tank so that the separator easily fits within the display tank.
The symmetrically disposed divider plate or plates may be positioned such that less than all sides, excluding the top and bottom sides, of at least one transit chamber are surrounded by the divider plate assembly. In this case, the side edges of the divider plates are either positioned adjacent to the inner surfaces of the fish display tank, or the side edges are positioned adjacent to the side edge region of a neighboring divider plate. Whenever a side edge of a divider plate is positioned adjacent to either an inner surface of the fish display tank or the side edge region of a neighboring divider plate, the spacing between that side edge and the adjacent surface must be such that fish (or any other preferred aquatic animal) larger than a selected size cannot pass through any gap formed at this boundary. Thus, the selected fish are confined to one aquatic region since they cannot pass from an aquatic region whose boundary includes the inner surface of one divider plate to an aquatic region whose boundary includes the outer surface of that same divider plate, or vice versa. The separator therefore effectively divides the fish display tank into plural aquatic regions, each of which have access to the water surface.
In cases where a divider plate's side edges are adjacent a neighboring divider plate, those plates may be integrally connected, in which case, there would be no effective boundary gap. For purposes of the present invention, divider plates, or divider plate/transit chamber assemblies are considered to be “integrally connected” when they are molded from a single piece of material, or are adhesively affixed together, or are connected by permanent solid or perforated edge connectors (the latter being adequate so long as the dimensions of any perforations are sufficiently small that fish larger than a selected size cannot pass through them).
The “selected size” of the confined fish will vary depending on the relative sizes of the fish that are to be segregated. If the segregation of fish is to be completely mutual, such as when one chooses to confine fish of different breeds or appearances or temperaments to different aquatic regions, the selected size of the fish should be such that even the smallest of these fish cannot pass through the boundary gaps.
In one alternative embodiment, symmetrically disposed divider plate or plates are positioned such that all sides, excluding the top and bottom, of at least one transit chamber are completely surrounded by the divider plate assembly. In this configuration, the divider plates may be integrally connected, or the side edges of non-integrally connected divider plates should be positioned sufficiently close to the side edges of adjacent neighboring divider plates that fish larger than a selected size cannot pass through the boundary gaps. Thus, in this configuration, as with the others, fish larger than a selected size cannot pass

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Separator for a fish display tank does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Separator for a fish display tank, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Separator for a fish display tank will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2878107

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.