Separation system, components of a separation system and...

Liquid purification or separation – With means to add treating material – Chromatography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S502100, C210S635000, C210S656000

Reexamination Certificate

active

06749749

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to separation systems and their components and more particularly to separation systems and components involving monolithic permeable polymeric materials.
Monolithic macroporous materials such as for example organic monolithic macroporous polymeric materials and monolithic silica packings are known as components for separation systems such as chromatographic or extraction systems. One class of such materials is formed as a monolithic macroporous polymer plug or solid support produced by polymerizing one or more monomers in a polymerization mixture that includes at least a porogen. It is known for some polymerization mixtures, to include other materials such as cross-linking agents, catalysts and small soluble polymers which can be dissolved after polymerization to control the porosity and pore size distribution. Moreover, the plug may be modified after being formed to add functional groups.
The plug or solid support is normally contained in a housing such as for example a chromatographic column or a pressure vessel. The portion of the housing where the plug resides acts as a reactor. In one prior art process for making monolithic columns, the polymerization mixture may be added to the column casing and polymerization initiated therein to form a macroporous polymeric plug or solid support within the walls of the column.
There are wide applications of these plugs or solid supports including gas, liquid and supercritical fluid chromatography, membrane chromatography and filtration, solid phase extraction, catalytic reactors, solid phase synthesis and others. The efficiency of the column or other container for the plug or solid support, the time required for a separation, and the reproducibility of the columns or other container for the plug or solid support are important commercial factors. The efficiency of separation systems such as chromatographic columns with porous polymer in them is related to both the selectivity of the column or other component containing the macroporous polymeric material and to zone spreading. Some of these factors are affected by molecular diffusion and velocity of the mobile phase in the plug or solid support during a separation process.
The manner in which molecular diffusion and velocity of the mobile phase affects column efficiency can be in part explained by showing the effect of these factors on Height Equivalent to Theoretical Plates (HETP), the conventional designation of column efficiency. The van Deemter Equation shows the relationship between zone spreading, flow velocity and diffusion in terms of H (HETP) as follows:
H=A+B/u+Cu with low H corresponding to high efficiency
U=Flow velocity of the mobile phase
A=Radial Eddy Diffusion coefficient
B=Longitudinal Molecular Diffusion coefficient
C=The mass transfer coefficient Molecular diffusion depends on the diffusion of the molecules but not on the packing of the bed. Eddy diffusion depends on the homogeneity of the packing of the particles.
Zone spreading from mass transfer can be minimized by using non-porous particles and porous particle with sizes smaller than 1.5 microns. However, packing with non-porous particles has extremely low surface area which is detrimental to the purification process (as opposed to the analytical process) because the purification process requires high sample loading. The use of very small packed particles requires either high pressure which is difficult in most of the separation process using current instrumentation or low velocity. which can increase the time for a given separation (sometimes expressed in H per minute).
The prior art separation systems that include as a component macroporous polymeric monolithic plugs or solid supports use plugs or solid supports formed from particles in the polymers that are larger than desired, less homogenous and include micropores. The large size of the particles and their lack of homogeneity result in a lack of homogeneity in the pore size distribution. The non-homogeneity of the pore sizes and large amount of micropores in the prior art porous polymers contributes greatly to the zone spreading as shown by the van Deemter Equation. The large number of micropores contributes to zone spreading by capturing sample and retaining it for a time. This may be stated conventionally as the non-equilibrium mass transfer in and out of the pores and between the stationary phase and the mobile phase.
The prior art plugs or solid supports formed of porous polymers have lower homogeneity of pore size, less desirable surface features and voids in their outer wall creating by wall effect and thus higher zone spreading and lower efficiency than desired in separation systems.
The prior art also fails to provide an adequate solution to a problem related to shrinkage that occurs during polymerization and shrinkage that occurs after polymerization in some prior art porous polymers. The problem of shrinkage during polymerization occurs because monomers are randomly dispersed in the polymerization solution and the polymers consist of orderly structured monomers. Therefore, the volume of the polymers in most of the polymerization is smaller than the volume of the mixed monomers. The shrinkage happens during the polymerization in all of the above preparation processes. One of the problems with shrinkage after polymerization occurs because of the incompatibility of a highly hydrophilic polymer support with a highly hydrophilic aqueous mobile phase or other highly polar mobile phase such as for example, a solution having less than 5-8 percent organic solvent content.
Shrinkage of the porous polymeric materials used in separation systems and their components during polymerization results in irregular voids on the surface of the porous polymers and irregularity of the pore size inside the polymer, which are detrimental to the column efficiency and the reproducibility of the production process. One reason the column efficiency is reduced by wall effect is that wall effect permits the sample to flow through the wall channels and bypass the separation media. One reason the reproducibility of the production process are reduced by wall effect is the degree of wall effect and location of the wall effect are unpredictable from column to column.
The columns with large channels in the prior art patents cited above have low surface area and capacity. The low capacities of the columns are detrimental for purification process which requires high sample loadings. In spite of much effort, time and expense in trying to solve the problems of shrinkage, the prior art fails to show a solution to reduced capacity.
Because of the above phenomena and/or other deficiencies, the columns prepared by the above methods have several disadvantages, such as for example: (1) they provide columns with little more or less resolution than commercially available columns packed with beads; (2) the separations obtained by these methods have little more or no better resolution and speed than the conventional columns packed with either silica beads or polymer beads, particularly with respect to separation of large molecules; (3) the wide pore size distribution that results from stacking of the irregular particles with various shapes and sizes lowers the column efficiency; (4) the non-homogeneity of the pore sizes resulting from the non-homogeneity of the particle sizes and shapes in the above materials contribute heavily to the zone spreading; (5) the large amount of micropores in the above materials also contributes greatly to the zone spreading; and (6) shrinkage of the material used in the columns reduces the efficiency of the columns. These problems limit their use in high resolution chromatography.
U.S. Pat. No. 5,453,185 proposed a method of reducing the shrinkage by reducing the amount of monomers in the polymerization mixture using insoluble polymer to replace part of the monomers. This reduces the shrinkage but is detrimental to the capacity and retention capacity factor of the columns whi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Separation system, components of a separation system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Separation system, components of a separation system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Separation system, components of a separation system and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3304134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.