Measuring and testing – Fluid pressure gauge – With pressure and/or temperature compensation
Reexamination Certificate
2000-07-20
2003-09-02
Lefkowitz, Edward (Department: 2855)
Measuring and testing
Fluid pressure gauge
With pressure and/or temperature compensation
C073S715000, C073S719000, C073S720000
Reexamination Certificate
active
06612175
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to sensors and more particularly relates to a pressure and/or temperature sensor having exceptional stability up to 200° C. and effectively operable up to 700° C. The pressure sensor of the present invention operates without fluid fill and has no exterior exposed metallic components. The pressure sensor includes a non-porous, impermeable surface that may be positioned in direct contact with fluids in an ultra-pure environment. In one embodiment of the present invention, the non-porous surface is comprised of a layer of single crystal sapphire that is impervious to chemical attack. In this manner, chemicals or contaminants cannot be extracted over time from the sensor into a process stream. Without limitation, the pressure sensor of the present invention is suitable for use in a chemically inert pressure transducer module or flow meter for sensing pressures in process fluids and may be molded directly into the high temperature plastic housing of the same.
BACKGROUND OF THE INVENTION
Pressure sensors have been utilized in various applications to measure either gauge pressure or absolute pressure. Many of these applications involve the measurement of pressure in unfavorable environments. The pressure sensor may be of a capacitive type or piezoresistive type. For example, an alumina ceramic capacitive sensor may comprise a thin, generally compliant ceramic sheet having an insulating spacer ring sandwiched between a thicker, non-compliant ceramic sheet. The first thin ceramic sheet or diaphragm is approximately 0.005 to 0.050 inches in thickness with a typical thickness of 0.020 inches. The thicker ceramic sheet has a thickness range between 0.100 to 0.200 inches. Those skilled in the art will appreciate that the thickness of the diaphragm is preferably dependent upon the diameter of the diaphragm. The spacer may be constructed of a suitable polymer. The apposed faces of ceramic disks are metalized by metals such as gold, nickel or chrome to create plates of a capacitor. A similar capacitive pressure transducer is described by Bell et al. in U.S. Pat. No. 4,177,496 (the '496 patent). Other capacitive pressure transducers similar to that described in the '496 patent are available and known in the art. A piezoresistive sensor typically utilizes a Wheatstone bridge, measuring changes in voltage and correlating the voltage changes to changes in sensed pressure. Either of these pressure sensor types may be utilized to measure the pressure of fluids in ultra-pure environments, however, there is a need for a non-contaminating pressure sensor.
Ultra pure processing of sensitive materials typically requires the use of caustic fluids. The susceptibility to contamination of the sensitive materials during the manufacturing process is a significant problem faced by manufacturers. Various manufacturing systems have been designed to reduce the contamination of the sensitive materials by foreign particles, ionic contaminants, and vapors generated during the manufacturing process. The processing of the sensitive materials often involves direct contact with caustic fluids. Hence, it is critical to deliver the caustic fluids to the processing site in an uncontaminated state and without foreign particulate. Various components of the processing equipment are commonly designed to reduce the amount of particulate generated and ions dissolved into the process fluids, and to isolate the processing chemicals from contaminating influences.
The processing equipment typically includes liquid transporting systems that carry the caustic chemicals from supply tanks through pumping and regulating stations and through the processing equipment itself. The liquid chemical transport systems, which includes pipes, pumps, tubing, monitoring devices, sensing devices, valves, fittings and related devices, are frequently made of plastics resistant to the deteriorating effects of the caustic chemicals. Metals, which are conventionally used in such monitoring devices, cannot reliably stand up to the corrosive environment for long periods of time. Hence, the monitoring and sensing devices must incorporate substitute materials or remain isolated from the caustic fluids.
While the processes must be very clean they often involve chemicals that are very aggressive. These could include for example harsh acids, bases, and solvents. The semiconductor industry has recently introduced processes which make use of aggressive abrasives. Both the process equipment and the monitoring instrumentation must be impervious to the mechanical action of these abrasives.
Further, high reliability of process equipment instrumentation is a must. Shutting down a semiconductor or pharmaceutical line for any reason is costly. In the past, pressure transducers have commonly employed fill fluids to transmit pressure from the process to the sensor itself. The fill fluids are separated from the process by an isolator diaphragm of one sort or another. Failure of this isolator diaphragm and subsequent loss of fill fluid into the process can cause loss of product and require system cleaning before restarting operations. Eliminating the isolator diaphragm and fill fluid from the design is advantageous.
Also, the processing equipment commonly used in semiconductor manufacturing has one or more monitoring, valving, and sensing devices. These devices are typically connected in a closed loop feedback relationship and are used in monitoring and controlling the equipment. These monitoring and sensing devices must also be designed to eliminate any contamination that might be introduced. The sensing devices may include pressure transducer modules and flow meters having pressure sensors. It may be desirable to have a portion of the pressure sensor of the pressure transducer or flow meter in direct contact with the caustic fluids. Thus, the surfaces of the pressure sensor in direct contact with the caustic fluids should be non-contaminating. It has been found that porous materials allow the ingress and egress of caustic fluids through such materials. For example, ceramic materials are bound together with various glass like materials which themselves are easily attacked by the more aggressive corrosive materials. Hence, it is preferable that those portions of the pressure sensor in direct contact with caustic fluids be made of non-porous materials.
U.S. Pat. No. 4,774,843 issued to Ghiselin et al. describes a strain gauge having a single crystal sapphire diaphragm adhered to an aluminum oxide base. Ghiselin et al. indicates that the sapphire is adhered by means of a glass bonding material, epoxy or other adherent methods. Ghiselin et al. does not provide a further description of the glass bonding material or how the glass bond adheres to the sapphire and aluminum oxide base. However. Ghiselin describes the glass bond as a low strength material that separates at strain points. Ghiselin describes a change in geometry to reduce the strain point and thereby avoid the deficiencies of the low strength of the glass. U.S. Pat. No. 5,954,900 issued to Hegner et al. describes problems with using a glass to bond to an aluminum oxide ceramic part. Hegner et al. describes the use of alumina as the joining material to alumina ceramic. The devices described by Hegner et al. and Ghiselin et al. are believed to be limited to effective operable temperatures below 400° C. Thus, the reliability of the sensors described by Hegner et al. and Ghiselin et al. decreases as temperatures exceed 400° C. The caustic fluids of the processing equipment may often exceed 400° C. Hence, there is a need for a pressure sensor having a non-porous surface that is bonded to the base with a high strength bond, wherein the bond between the non-porous material and the base is stable at temperatures in excess of 400° C.
It has also been found that Electromagnetic and Radio Frequency Interference (EMI and RFI respectively) degrade the performance of piezoresistive sensors. A conductive shielding layer cannot be positioned directly between a silicon
Cucci Gerald R.
Diaz Jorge Andrés Diaz
Peterson Tom
Jenkins Jermaine
Lefkowitz Edward
NT International Inc.
Patterson Thuente Skaar & Christensen P.A.
LandOfFree
Sensor usable in ultra pure and highly corrosive environments does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sensor usable in ultra pure and highly corrosive environments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sensor usable in ultra pure and highly corrosive environments will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3073911