Sensor timepiece, sensor timepiece data input system and...

Horology: time measuring systems or devices – Controlled by a disparate device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C368S187000

Reexamination Certificate

active

06798718

ABSTRACT:

TECHNOLOGICAL FIELD
The present invention relates to a sensor timer, sensor timepiece data input system, sensor timepiece data input method, and computer-readable recording medium for recording a program for implementing this method on computer, and more particularly relates to a sensor timepiece, sensor timepiece data input system, sensor timepiece data input method, and computer-readable recording medium for recording a program for implementing this method on computer, where individual calibration such as temperature compensation can be easily carried out for each sensor timepiece, where measurement of physical quantities by each sensor can be performed with a high degree of precision, where setting of a time and a date for implementing the original time function of the sensor timepiece and where incorrect setting can be reduced.
BACKGROUND ART
In recent years, sensor timepieces that are clocks having sensors for measuring various physical quantities such as temperature, pressure, light, magnetism and humidity, etc., built-in, and having a function for displaying and outputting the values measured by the sensors, have been implemented.
For example, in Japanese Patent Publication Laid-open No.
8-15070
, there is disclosed a multi-function timepiece having a pressure sensor and a magnetic sensor which is capable of measuring pressure, magnetism and temperature. The magnetic sensor of this multi-function timepiece employs a magnetic resistance element to detect magnetism. On the other hand, the pressure sensor of the multi-function timepiece employs a semiconductor pressure sensor of a bridge of diffused resistances having a piezo-electric resistance effect formed on a diaphragm, but actual measurements taken with the pressure sensor have to be subjected to temperature compensation matching with temperature characteristics which depend on the diffused resistances.
To this end, multi-function timepieces normally have a temperature sensor for temperature compensation built-in. However, the multi-function timepiece described above takes note of the fact that the temperature coefficient for the resistance of the magnetic resistance element within the magnetic sensor is substantially the same as for the temperature range to be measured. A smaller multi-function timepiece can therefore be implemented with high precision by storing temperature data exhibiting the relationship between temperature and resistance when the magnetic resistance element is driven at a constant current in advance as a temperature conversion table, and then carrying out temperature compensation on actual values for the pressure sensor based on this temperature data.
However, output values of typical voltage sensors have individual variations, and when temperature compensation is carried out collectively for a plurality of pressure sensors having different individual temperature characteristics, the precision of values measured by this pressure sensor drops and it is not possible to measure pressure with a high degree of precision.
The precision of the pressure sensor can be maintained, however, by removing variations in the values themselves which are outputted from the pressure sensor so as to increase precision. For example, it is well known to connect resistances with small temperature coefficients in parallel with the bridge resistances so as to increase the precision of the pressure sensor itself.
When resistances with small temperature coefficients are connected in parallel with individual pressure sensors it is necessary to provide elements such as volume resistors etc. for individually adjusting each of these small resistors and the adjustment of these resistors takes up a substantial amount of time and labor.
On the other hand, sensor timepieces having a pressure sensor etc. have an original clock function and it is therefore necessary to set the time and date on this kind of sensor timepiece. Conventionally, this time and date setting operation is carried out manually by a user operating buttons and this takes a substantial amount of time and labor. Setting errors are also common because this is a manual operation.
As the present invention sets out to resolve the aforementioned problems, it is the object of the present invention to provide a sensor timepiece, a sensor timepiece data input system, a sensor timepiece data input method, and a computer-readable recording medium recorded with a program for executing this method on computer, where individual calibration such as temperature compensation can be carried out in a straightforward manner for each sensor, and where physical quantities can be measured in a highly precise manner by each sensor.
Further, it is the object of the present invention to provide a sensor timepiece, a sensor timepiece data input system, a sensor timepiece data input method, and a computer-readable recording medium recorded with a program for executing this method on computer, where setting of the time and a date in order to implement the original timepiece function of the sensor timepiece can be carried out in a straightforward manner and where the number of erroneous settings is reduced.
DISCLOSURE OF THE INVENTION
In order to achieve the aforementioned objects, a sensor timepiece of the present invention equipped with at least one sensor comprises calibration control means for controlling writing of detection values of the sensor to memory in synchronism with external environmental setting control means for controlling an external environment corresponding to physical quantities to be measured by the sensor.
According to this sensor timepiece, detection data peculiar to individual sensor timepieces corresponding to the environment is automatically stored in advance in memory by the calibration control means and the load on the adjustment process is alleviated. With the sensor timepiece of the present invention, the calibration control means exerts control so as to write the sensor detection values to memory so as to correspond to a plurality of temperature information.
According to this sensor timepiece, data useful in temperature compensation can be automatically stored in memory, which makes the later generation of temperature compensation data straightforward.
The sensor timepiece of the present invention also comprises operation control means for generating temperature compensation data based on the data written to the memory, and current temperature data and sensor detection values, and converting the sensor detection values to physical quantities for output.
According to this sensor timepiece, the operation control means generates temperature compensation data and the sensor detection values are converted to physical quantities and outputted based on this temperature compensation data so the highly precise compensated output suited to individual sensor characteristics can be acquired.
The sensor timepiece of the present invention can also be equipped with mode control means for controlling switching over between an operation mode for performing normal operations including conversion and output of physical quantities by the operation control means and a calibration mode where the calibration control means performs calibration operations.
According to this sensor timepiece, the mode control means controls switching over between an operation mode for performing normal operations including conversion and output of physical quantities by the operation control means and a calibration mode where the calibration control means performs calibration operations and normal operation and a calibration process can therefore easily be performed with individual timepieces.
The sensor of the present invention can also be provided with time/date setting means, taking detection signals detected by the sensor(s) as input, and setting a time and/or a date based on the inputted detection signals.
According to this sensor timepiece, the time/date setting means, takes detection signals detected by the sensor(s) as input, and sets a time and/or a date based on the inputted detection signa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sensor timepiece, sensor timepiece data input system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sensor timepiece, sensor timepiece data input system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sensor timepiece, sensor timepiece data input system and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3235375

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.