Sensor membranes

Chemistry: electrical and wave energy – Apparatus – Electrolytic

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

204403, 435817, 4352872, 4352879, 436 71, G01N 2726

Patent

active

056372019

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates to electrode membrane combinations for use in ion selective electrodes and biosensors. In addition, the present invention relates to methods for the production of such electrode membrane combinations and the use of ion selective electrodes and biosensors incorporating such electrode membrane combinations in the detection of analytes. The present invention also relates to novel compounds used in the electrode membrane combinations.


BACKGROUND OF THE INVENTION

Lipid bilayer membranes (also known as black lipid membranes--BLM's) are well known in the biological and chemical fields. The ability of ionophores to modulate the ion flux through these membranes is also well known. Modulation of the ion flux of the membrane in response to specific molecules is also known, especially in the biochemical fields. The lipid bilayer membranes are however extremely fragile and sensitive to non-specific physical and chemical interference. The preparation and properties of the BLM's are fully described in textbooks and literature articles.
It has been known since 1967 that ionophores incorporate into lipid bilayers (P. Mueller et al, Biochem. Biophys. Res Commun., 26 (1967) 298; A. A. Lev et al Tsitologiya, 9 (1967) 102;) in BLM's and that the selective ion flux through the membrane could thus be monitored. Possibility of producing a lipid bilayer containing ionophores on an ionic hydrogel reservoir and using such as an ion selective electrode has also been suggested (U. J. Krull et al, U.S. Pat. No. 4,661,235, Apr. 28, 1987), however no means of obtaining reproducible and stable bilayer membranes have been taught in the art. Using a Langmuir-Blogett bilayer and multilayer approach (T. L. Fare et al Powder Technology, 3, (1991), 51-62; A. Gilardoni et al, Colloids and Surfaces, 68, (1992), 235-242) has been attempted however the ion selectivity was inadequate and the response time was too slow for practical purposes, stability was not adequate and the LB technique is generally considered to be too difficult for industrial applications.
Ionophores in the context of the present invention are any of the naturally occurring lipophilic bilayer membrane compatible ion carriers such as valinomycin, nonactin, methyl monensin or other naturally occurring ion carriers, or synthetic ionophores such as lipophilic coronands, cryptands or podands, or low molecular weight (<5000 g/mol) naturally occurring or synthetic ion channels such as gramicidin, alamethicin, mellitin or their derivatives. Additionally trialkylated amines or carboxylic acids such as phytic acid may serve as proton ionophores.
Ion channels may also include large, lipid membrane compatible, protein ion channels, especially where their function and stability is enhanced through their incorporation into lipid bilayers that are essentially free of extraneous alkane material.
In the broad context of the present invention lipids are deemed to be any amphiphilic molecules, either naturally occurring or synthetic, containing a hydrophobic hydrocarbon group and a hydrophilic head group.
Biosensors and ion selective electrodes incorporating gated ionophores in lipid membrane combinations have been disclosed in International Patent Application Nos PCT/AU88/00273, PCT/AU89/00352, PCT/AU90/00025 and PCT/AU92/00132. The disclosure of each of these references is incorporated herein by reference.
As is disclosed in these applications, suitably modified receptor molecules may be caused to co-disperse with amphiphilic molecules and produce membranes with altered surface binding properties, which are useful in the production of biosensor receptor surfaces of high binding ability and high binding specificities. It is also disclosed that ionophores such as polypeptide ionophores may be co-dispersed with amphiphilic molecules, thereby forming membranes with altered properties in relation to the permeability of ions. There is also disclosure of various methods of gating these ion channels such that in response to the binding of an an

REFERENCES:
patent: 4661235 (1987-04-01), Krull et al.
patent: 5204239 (1993-04-01), Gitler et al.
patent: 5234566 (1993-08-01), Osman et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sensor membranes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sensor membranes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sensor membranes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-762348

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.