Sensor for biopotential measurements

Surgery – Diagnostic testing – Structure of body-contacting electrode or electrode inserted...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S393000, C600S396000, C600S397000, C607S139000, C607S148000, C607S153000

Reexamination Certificate

active

06510333

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to the field of sensors for measuring electrical potentials obtained from the surface of the skin, for example, electroencephalogram (EEG), electrocardiogram (ECG), or electromyogram (EMG).
BACKGROUND OF THE INVENTION
In the past, electroencephalogram (EEG), electrocardiogram (ECG), and electromyogram (EMG) electrodes have needed the assistance of technicians for proper use, and thus have been relegated for use in clinical environments. With the advent of new modem electronic devices, there has developed a need for an electrode sensor that patients may use at home. These new devices allow patients to use new portable medical devices that require electrodes. The electrode needs to be non interfering with the patients hair and needs to be designed so that its use does not require chemicals or gels that can leave a mess. The prior art does not satisfy these requirements.
U.S. Pat. No. 3,508,541, entitled “Electrode Construction” to R. M. Westbrook et al. discloses an electrode device comprising an electrode element formed of an intimately bonded homogeneous mixture of finely divided Ag and AgCl. An elongated resilient skin engaging member, such as a disposable hollow sponge, holds an electrolyte, such as a sodium chloride gel. Additionally, Westbrook et al. discloses an electrode device which is simply applied to the scalp, eliminates motion artifacts, and regardless of such factors as hair tonics, sunburn, hair length/thickness, or perspiration obtains a good, low impedance, contact. The electrode of Westbrook et al. makes no suggestion that a plurality of the elongated resilient skin engaging members would be beneficial in achieving improved contact, and the electrode device configuration is complicated and would be expensive to mass produce.
U.S. Pat. No. 4,195,626 to Schweizer entitled “Device for the Production and Application of Body Stimuli Devices”, discloses a biofeedback chamber for applying stimuli and for measuring and analyzing a subject's reaction to control the stimuli. One of the stimulus applicators is a flexible laminar electrode comprising a plurality of reinforced filament bundles, a hollow reservoir and a porous reservoir for holding an electrolyte, and a metal conductor embedded in the porous reservoir. The filament bundles provide capillary action to deliver electrolyte from the porous reservoir to a patient's skin. Besides the fact that Schweizer's disclosure is directed to an electrode for a stimulus applicator as opposed to an electrode for measuring biopotentials, Schweizer teaches away from the present invention in that a flexible laminar electrode is formed of a flexible support, two plastic sheets, yet the filament bundles are stiffened with a reinforcement jacket.
U.S. Pat. No. 4,967,038 to Gevins et al. entitled “Dry Electrode Brain wave Recording System”, discloses a semi-rigid helmet containing a plurality of rubber multi-contact electrodes. The electrodes comprise a gold-plated metal pin with one end formed in a rubber base. A plurality of pyramid-shaped rubber fingers, extending from the base, are terminated with conductive round metal tips. Metal flexible wire, attached at a solder point to the pin within the base, extends through the center of each finger to their tips. The flexibility of the multiple fingers allows the electrode to adapt to the local contours of a head. Having redundant, multiple contact points with the scalp improves the connection since it is not dependent on the impedance at a single small point. The rubber multi-contact electrodes of Gevins et al. do not incorporate a mechanism for applying an electrolyte to the scalp in order to improve electrical contact, improve comfort by moistening the skin, and reducing the electrical resistance of the skin. Additionally, Gevens et al. requires electrical conductivity in each of the fingers of their electrode.
U.S. Pat. No. 5,211,184 to Yee et al., entitled “Method and Apparatus For Acupuncture Treatment”, discloses an electrode assembly for applying an electrical signal to the skin surface. The electrode assembly comprises a hollow body filled with an electrically conductive fluid, a wick-like material for delivering the fluid to a point where one end of the material is in contact with the skin surface, and a metallic cap attached to a second end of the material. Besides the fact that the Yee et al. disclosure is directed to an electrode for applying an electrical signal as opposed to an electrode for measuring biopotentials, there is no suggestion that a plurality of wicks extending from the hollow body would be beneficial in achieving improved contact with the skin surface.
U.S. Pat. No. 6,067,464 to Musha, entitled “Electrode”, discloses an electrode for measuring bio-electric waves. The electrode comprises a support member, a piece of absorbent fiber, and a non-corrosive lead. The support member, made of an insulating material such as ceramic, plastic or heat treated synthetic fibers or felt, is disk-shaped with a hollow, concentric cylindrical projection. The absorbent fiber, made of felt, cotton or synthetic fibers, is mounted in the projection on the support with one end extending beyond the edge of the projection. Alternatively, the absorbent fiber may comprise a bundle of carbon powder impregnated hard felt rods with rounded tips. Electrically conductive fluid, such as saline solution, is introduced into the support through an insertion hole formed opposite the projection, and is absorbed by the absorbent fiber. The electrically conductive fluid may also comprise various skin conditioners, counterirritant materials, anti-inflammatory agents, and astringents. A lead, made of a bundle of carbon fibers, makes contact with the absorbent fiber through the wall of the projection. Musha teaches away from the present invention by incorporating an insertion hole for introducing electrically conductive fluid into the electrode before and during use as opposed to including a reservoir for holding sufficient electrically conductive fluid for the life of the electrode. Additionally, there is no suggestion that a support comprising a plurality of projections, each with an absorbent fiber, would be beneficial in achieving improved contact with the skin surface.
These conventional sensor configurations described above each fail to disclose at least a single significant attribute of the present invention. What is needed is an electrode which may be used on open skin, or skin covered with hair, does not require the use of external gels or waxes to obtain adequate electrical conduction to the skin surface, may be comfortably worn for long periods of time, and may be properly applied to an individual's scalp without the assistance of a technician.
BRIEF SUMMARY OF THE INVENTION
One advantage of the invention is that it provides a sensor which can be used on open skin, or skin covered with hair and does not require the use of external gels or waxes to obtain adequate electrical conduction to the skin surface.
Another advantage of the present invention is that it provides a sensor which can be comfortably worn for long periods of time.
Yet, another advantage of the present invention is that it provides a sensor which can be applied by the individual wearing the sensor. Hence, no technician is required.
To achieve the foregoing and other advantages, in accordance with all of the invention as embodied and broadly described herein, a sensor for biopotential measurements comprising at least one elastomeric bristle having a base and a tip with a channel running therebetween and a porous wick extending through the channel, the tip contacting a skin surface; a reservoir containing an electrically conductive material is formed at the base of said elastomeric bristle; and an electrode for detecting electrical potential. The porous wick transports the electrically conductive material from the reservoir to the elastomeric bristle tip in order to conduct an electrical signal obtained from the skin surface, moisten the skin surface, and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sensor for biopotential measurements does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sensor for biopotential measurements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sensor for biopotential measurements will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3010394

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.