Measuring and testing – Liquid analysis or analysis of the suspension of solids in a... – Content or effect of a constituent of a liquid mixture
Reexamination Certificate
2002-12-09
2004-10-19
Williams, Hezron (Department: 2856)
Measuring and testing
Liquid analysis or analysis of the suspension of solids in a...
Content or effect of a constituent of a liquid mixture
C073S723000, C702S138000
Reexamination Certificate
active
06804993
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to an arrangement adapted to determine one or more characteristics of a sample fluid, and a method of determining one or more characteristic of the sample fluid using such arrangement. In particular, the present invention is directed to an arrangement in which a first sensor contained in a particular housing and a second sensor positioned externally from the particular housing are connected to the same electronics assembly which is adapted to determine a first characteristic of the sample fluid based on data obtained or measurements taken by the first sensor, and a second characteristic of the sample fluid based on data obtained or measurements taken by the second sensor.
BACKGROUND OF THE INVENTION
Conventional arrangements (e.g., sensor arrangements) may be used to determine one or more characteristic of a sample fluid within a container (e.g., a tank, a pipe, etc.). For example, the conventional arrangements can be used to determine a pressure associated with the sample fluid, a temperature of the sample fluid, a density of the sample fluid, etc. Such arrangement is described in U.S. Pat. No. 5,870,695, the entire disclosure of which of which is incorporated herein by reference, which includes a master pressure transmitter contained within a first housing, and a slave pressure transmitter positioned externally from the master pressure transmitter. The master pressure transmitter and the slave pressure transmitter determine a first pressure of a sample fluid in a container and a second pressure of the sample fluid, respectively.
Specifically, the master pressure transmitter of this publication includes a first transducer, a first circuit, a second circuit and a communication port. The slave pressure transmitter includes a second transducer and a third circuit. The first transducer is connected to the first circuit, and the second transducer is connected to the third circuit. According to the disclosure of this publication, the first circuit determines the first pressure of the sample fluid measured by the first transducer, and the third circuit determines second pressure of the sample fluid measured by the second transducer. Moreover, the first circuit and the third circuit are connected to the second circuit, and the second circuit determines a difference between the first pressure of the sample fluid and the second pressure of the sample fluid. The second circuit is connected to the communication port, and the communication port is connected to a control unit. The control unit transmits signals to the master pressure transmitter based on the difference between the first pressure of the sample fluid and the second pressure of the sample fluid.
Nevertheless, in such conventional arrangement, because the first transducer and the second transducer are connected to different circuits which determine the pressure of the sample fluid that is measured by the first transducer and the second transducer, respectively, the wiring arrangement of the conventional arrangement may be complicated, and difficult to service.
SUMMARY OF THE INVENTION
Therefore, a need has arisen to provide an arrangement and method for determining one or more characteristics of a sample fluid which overcome the above-described and other short comings of the related art.
One of the advantages of the present invention is that a first sensor contained within a particular housing and a second sensor positioned externally from the particular housing may be electrically coupled to the same electronics assembly which is adapted to determine one or more characteristics of a sample fluid that is measured by the first sensor and the second sensor, respectively. Consequently, a wiring arrangement used in the arrangement of the present invention may be less complicated than the wiring arrangement utilized in conventional arrangements. Another advantage of the present invention is that due to the second sensor being positioned externally from the particular housing, it is not necessary to disassemble the particular housing so as to repair the second sensor.
These and other advantages can be realized with an exemplary embodiment of an arrangement and method according to the present invention which determine one or more characteristics of a sample fluid. For example, a first assembly (e.g., a first sensor assembly) may be contained within the particular housing, and a second assembly (e.g., a second sensor assembly) may be positioned externally from such housing. In one exemplary implementation, the second assembly can be contained in another housing. The first assembly can include a first sensor (e., a first pressure sensor, a first temperature sensor, a first density sensor, etc.) which may be adapted to obtain first data associated with a first characteristic (e.g., a first pressure, a first temperature, a first density, etc.) of the sample fluid. The first assembly can also include a particular electrical assembly which may be electrically coupled to the first sensor, and adapted to determine the first characteristic of the sample fluid as a function of the first data. In one exemplary embodiment of the present invention, the first sensor and/or the particular electrical assembly can be contained within the housing.
Further, the second assembly (e.g., second sensor assembly) can include a second sensor (e.g., a second pressure sensor, a second temperature sensor, a second density sensor, etc.) which may be adapted to obtain second data associated with a second characteristic (e.g., a second pressure, a second temperature, a second density, etc.) of the sample fluid. This second sensor can be electrically coupled to the particular electrical assembly, and such particular electrical assembly may be further adapted to determine the second characteristic of the sample fluid as a function of the second data. For example, the sample fluid can be inside a container (e.g., a tank, a pipe etc.). In addition, the first assembly can be affixed to the container at a first location, and the second assembly can be affixed to the container at a second location which is different than the first location.
In another exemplary embodiment of the present invention, the first assembly can also include a further electrical assembly which may be electrically coupled to the second electrical assembly. The further electrical assembly may be adapted to determine a difference between the first characteristic of the sample fluid and the second characteristic of the sample fluid. Moreover, the first assembly can further include a transmission assembly which may be electrically coupled to the further electrical assembly, and can be adapted to transmit the difference between the first characteristic of the sample fluid and the second characteristic of the sample fluid to a control assembly which could utilize such difference to obtain further characteristics of the sample fluid.
REFERENCES:
patent: 5495769 (1996-03-01), Broden et al.
patent: 5606513 (1997-02-01), Louwagie et al.
patent: 5870695 (1999-02-01), Brown et al.
patent: 5899962 (1999-05-01), Louwagie et al.
patent: 6170338 (2001-01-01), Kleven et al.
patent: 6397114 (2002-05-01), Eryurek et al.
Smar Research Corporation
Williams Hezron
Wilson Katina M.
LandOfFree
Sensor arrangements and methods of determining a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sensor arrangements and methods of determining a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sensor arrangements and methods of determining a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3308099