Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – With textured surface
Reexamination Certificate
2002-03-29
2004-12-07
Flynn, Nathan J (Department: 2826)
Active solid-state devices (e.g., transistors, solid-state diode
Combined with electrical contact or lead
With textured surface
C257S773000, C257S775000, C257S750000, C438S622000, C438S697000
Reexamination Certificate
active
06828678
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to semiconductor device manufacturing, and more particularly, to a method for fabricating a layer with a substantially smooth surface.
2. Description of the Related Art
The following descriptions and examples are not admitted to be prior art by virtue of their inclusion within this section.
In most cases, a material may include a plurality of peaks and valleys upon its surface, which are associated with the surface roughness of the material. Such peaks and valleys may be visible by the naked eye or through an optical microscope, an electron microscope, or an atomic force microscope (AFM). In either embodiment, the surface roughness of a material may be characterized by the vertical distances between the bases of valleys and crests of their adjacent peaks. Since the dimensions of peaks and valleys may differ across a surface, calculating a statistical mean of a plurality of surface roughness measurements may yield a roughness that is more representative of the entire surface. For example, in some embodiments, an average of a plurality of surface roughness measurements may be calculated to produce a statistical mean of a material. In other embodiments, a root mean square of a plurality of surface roughness measurements may be calculated to produce a statistical mean of the material. In general, “root mean square” may be referred to as a measure of the magnitude of a set of numbers or measurements.
In some cases, the surface roughness of one or more layers within a semiconductor topography may affect the operation of a device formed from such a topography. For example, in cases including magnetic random access memory (MRAM) devices, layers with relatively rough surfaces may undesirably cause a junction within a device to breakdown at a relatively low voltage. In particular, relatively rough surfaces of layers within MRAM devices including magnetic tunneling junctions (MTJ) may cause a breakdown of the junction at a low voltage. In some cases, breakdown at a relatively low voltage may cause the device to frequently malfunction, thereby decreasing the reliability and/or yield of the device. In addition or alternatively, the threshold voltage by which the device is activated may be lower and thus, the junction breakdown may inhibit the entire operation of the device in some cases. In general, the breakdown of a MTJ may be attributed to an uneven tunneling layer within the junction. Since tunneling layers within MTJs are typically very thin (e.g., approximately 15 angstroms or less), the unevenness of such a layer may be caused by relatively rough surfaces of underlying layers. Consequently, it may be beneficial to deposit a layer with substantially smooth surfaces under such a tunneling layer.
Conventional deposition processes, however, have limited capability to produce layers with substantially smooth surfaces. In particular, deposition techniques used in the semiconductor fabrication industry typically produce layers with relatively rough topographies. For example, conventional deposition techniques may yield a root mean square surface roughness that is greater than approximately 100 angstroms and in some cases, greater than approximately several thousand angstroms. “Root mean square” may refer to a result of a statistical calculation correlating a plurality of measurements as described above. Moreover, the accumulation of layers with such surface roughnesses may cause an upper layer to have an even greater surface roughness than may be produced by a particular deposition technique.
Therefore, it would be desirable to develop a method for fabricating semiconductor layers with substantially smooth surfaces. In particular, it may be advantageous to develop an MRAM device, which includes substantially smooth layers underlying a tunneling layer. Consequently, a method for reducing the likelihood of junction breakdown within a MRAM device may be developed.
SUMMARY OF THE INVENTION
The problems outlined above may be in large part addressed by a method for reducing the surface roughness of a metal layer. In particular, a method is provided for reducing the mean surface roughness of a metal layer. In some embodiments, the method may include polishing the metal layer to a level substantially above any layers arranged directly beneath the metal layer. In some cases, the semiconductor topography comprising the metal layer may be substantially absent of any material laterally adjacent to the metal layer during polishing. In either case, a semiconductor topography having a metal layer with a mean surface roughness less than the mean surface roughness obtained during the deposition of the metal layer may be obtained. For example, a metal structure with a mean surface roughness less than approximately 10 angstroms may be obtained.
In yet other embodiments, the method may include depositing a fill layer upon a metal layer and subsequently polishing the fill layer. In some cases, polishing the fill layer may form a surface which includes portions of the metal layer and portions of the fill layer residing above the metal layer. In this manner, a semiconductor layer may be formed with fill material arranged around and within a plurality of peaks and valleys associated with the surface roughness of the metal layer. In such an embodiment, an upper surface of the fill layer may be substantially level with at least one of the peaks. In other cases, polishing the fill layer may include forming a surface in which the fill layer is arranged above an upper boundary of the metal layer-fill layer interface. In such an embodiment, the thickness of the fill layer arranged above the upper boundary may be less than the thickness of the interface.
As stated above, some embodiments of the method described herein may include polishing a metal layer arranged across approximately an entirety of a semiconductor topography to a level substantially above any layers arranged directly beneath the metal layer. In particular, the method may include depositing a metal layer upon a semiconductor topography, polishing the metal layer, and terminating the polishing process at a level substantially above any layers arranged directly beneath the metal layer. In some cases, the semiconductor topography comprising the metal layer may be substantially absent of any material arranged laterally adjacent to the metal layer during the polishing process.
In either embodiment, the polishing process may include removing an upper portion of the metal layer such that no underlying layer is exposed. In some cases, polishing the metal layer may include removing between approximately 100 angstroms and approximately several thousand angstroms of the metal layer. In other embodiments, polishing the metal layer may include removing less than approximately 100 angstroms. In addition, in some cases the method may include patterning the metal layer. For example, in some embodiments, the method may include patterning the metal layer prior to the polishing process. In other embodiments, the method may include patterning the metal layer subsequent to the polishing process. In such an embodiment, the method may further include depositing a layer upon the polished metal layer prior to the patterning process. In general, the metal layer may include any metallic material, such as, but not limited to, aluminum, copper, tantalum, tungsten, titanium, or a metal alloy thereof. In addition or alternatively, the metal layer may include a metal nitride material, such as, but not limited to, titanium nitride or tungsten nitride.
In some embodiments, the method may include measuring a mean surface roughness of the metal layer subsequent to polishing the metal layer. In particular, measuring the mean surface roughness may include calculating an average surface roughness, a root mean square surface roughness, or any other statistical mean surface roughness of the metal layer. In some cases, the method may further include re-polishing the metal layer when the measured mean surface roughness i
Conley & Rose, P.C.
Daffer Kevin L.
Flynn Nathan J
Greene Pershelle
Lettang Mollie E.
LandOfFree
Semiconductor topography with a fill material arranged... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor topography with a fill material arranged..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor topography with a fill material arranged... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3332889