Semiconductor nitride structures

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S615000

Reexamination Certificate

active

06593589

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to semiconductor optoelectronics including devices for photodetection, optical modulation and switching, emission of non-coherent or coherent radiation.
2. Description of the Prior Art
In semiconductor structures, the tunneling of electrons across a potential barrier may be accompanied by the emission of optical (both visible and IR) radiation. In particular, tunneling through the barrier in the p-n junction may result in emission of photons with an photon energy controlled by the junction voltage (so called “diagonal tunneling”). An interesting feature of the emission is the feasibility of tuning the wavelength by application of a voltage. Progress in fabrication of quantum wells is opening new opportunities for the use of tunneling in optoelectronic devices, both for radiation sources, such as lasers, and detectors.
In R. F. Kazarinov and R. A, Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,”
Sov. Phys. Semicond
, 5 (10), 207-209, (1971, October), the optical amplification in the IR region is suggested by transitions between electronic minibands in semiconductor superlattice. Different other versions for unipolar laser operation are proposed in following papers: E. M. Belenov, P. G. Eliseev, A. N. Oraevskii, V. I. Romanenko, A. G. Sobolev, and A. V. Uskov, “Analysis of optical amplification due to tunneling of electrons in a quantum-well semiconductor structure”,
Sov. J Quant. Electronl
, 18 (8), 995-999 (1988, August). R. Q. Uang and J. M. Zu, “Population inversion through resonant interband tunneling”,
AppL. Phys. Lett
., 59, 181-182 (1991, July 8). A. Katalsky, V. J. Goldman, and J. H. Abeles” “Possibility of infrared lasaer in a resonant tunneling structure”,
Appl. Phys. Lett
., 59 (21), 2636-2638 (Nov. 18, 1991). Q. Hu and S. Feng, “Feasibility of far-infrared lasers using multiple semiconductor quantum wells”,
Appl. Phys. Lett
., 59, 2923-2925 (Dec. 2, 1991). S. I. Borenstain and J. Katz, “Evaluation of the feasibility of a far-infrared laser based on intersubband transitions in quantum wells”,
AppL. S Phys. Lett
., 55, 654-656 (Aug. 14, 1992). Other structures are proposed to provide the amplification by intraband (intersubband) transitions of electrons in quantum-well structures. In E. M. Belenov, P. G. Eliseev, A. N. Oraevskii, V. I. Romanenko, A. G. Sobolev, and A. V. Uskov, “Analysis of optical amplification due to tunneling of electrons in a quantum-well semiconductor structure”,
Sov. J Quant. Electronl
, 18 (8), 995-999 (August, 1988) resonant tunneling was considered in a quantum well with initial and final states in continuous spectrum. It was proposed also to employ a series (cascade) of such single-step structures to increase the effective optical gain of electromagnetic wave passing through the cascade structure. It was shown that under some bias condition the optical gain of 100 cm
−1
can be obtained with a spectral peak tunable by the bias voltage. These results are claimed to be applicable to the emission sources (electroluminescent and laser diodes), photodetectors (wavelength-tunable selective photodetection) and optical modulators. Simplified energy band diagram of quantum-well tunnel heterostructure is discussed in E. M. Belenov, P. G. Eliseev, A. N. Oraevskii, V. I. Romanenko, A. G. Sobolev, and A. V. Uskov, “Analysis of optical amplification due to tunneling of electrons in a quantum-well semiconductor structure”,
Sov. J Quant. Electron
., 18 (8), 995-999 (August, 1988).
In A. Kastalsky, V. J. Goldman, and J. H. Abeles, “Possibility of infrared laser in a resonant tunneling structure”,
AppL. Phys. Lett
., 59 (21), 2636-2638 (Nov. 18, 1991), a theoretical analysis was reported of a cascadable quantum-well tunnel structure and the magnitude of the gain of 50-90 cm
−1
was claimed in the photon energy range near 0.12 eV (wavelength—10 &mgr;m). The three-barrier scheme was assumed as a multi-layer period of the structure with quantum-wells separated by bulk regions.
Unipolar laser action was achieved in and reported by J. Faist, F. Capasso, D. L. Slvco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser”, Science, v. 264, pp. 553-556 (Apr. 22, 1994). The heterostructure based on InGaAs/AIInGaAs heterosystem were proposed for laser operation at 10.6 &mgr;m with InP cladding layers and InP substrate. A basic structure included many periods of quantum-wells with a total thickness of 4 &mgr;m. In this case, the calculated optical confinement parameter relative the combined active region was estimated as 0.78 and laser oscillation threshold gain obtainable in a 1 mm long diode was estimated as 22 cm
−1
. The calculated efficiency of the proposed laser was stated as 1.3%. The key feature of the proposed structure was identified as the fact that electrons tunnel from the lower level of the active region faster than electron-phonon relaxation time which controls electron population of the upper level. Thus the resonant tunneling is proposed to work for emptying the final state of laser optical transition.
Experimental studies of miniband-transition absorption and quantum-well intersubband absorption were reported in L. C. West and S. I. Eglash, “First observation of an extremely large dipole transition within the conduction band of a GaAs quantum well”,
AppL. Phys. Lett
., 46, 1156-1158 (Jun. 15, 1985). B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, “New 10 &mgr;m infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices”,
Appl. Phys. Lett
., 50, 1092-1094, (Apr. 20, 1987). J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “Measurement of the intersubband scattering rate in semiconductor quantum wells by excited state differential absorption spectroscopy”,
Appl. Phys. Lett
., 63 (10), 1354-1356 (Sept. 6, 1993) J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, and K. W. West, “Phonon limited intersubband lifetimes and linewidths in a two-dimensional electron gas”,
Appl. Phys. Lett
., 64 (7), 872-874 (Feb. 14, 1994)] and in a number of other papers, whereas opposite optical processes photon emission and gain were observed later by [M. Helm, E. Colas, P. England, F. DeRosa, and S. J. Allen, Jr., “Observation of grating induced intersubband emission from GaAs/AIGaAs superlattices”.
Appl. Phpys. Lett
., 53, 1714-1716 (Oct. 3, 1998). J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “Mid-infrared field-tunable intersubband electroluminescence at room temperature by photon-assisted tunneling in coupled.quantum wells”,
Appl. Phys. Lett
., 64 (9), 1144-1146 (Feb. 28, 1994). J. Faist, F. Capasso, C. Sirtori, D. L, Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, ‘Narrowing of the intersubband electroluminescent spectrum in coupled-quantum-well heterostructures”,
Appl. Phys. Lett
., 65 (1), 94-96 (May 3, 1994). J. Faist, F. Capasso, D. L. Slvco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser”, Science, v. 264, pp. 553-556 (Apr. 22, 1994)]. Most of mid-IR laser realizations of quantum-cascade tunneling lasers are associated with heterosystem InGaAs/AlInGaAs on the InP substrates [J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser”,
Science
, v. 264, pp. 553-556 (Apr. 22, 1994). J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characateristics and high To operation”,
Appl. Phys. Lett
., 65, 2901-2903 (1994). J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Continuous wave operation of a vertical transition quantum cascade laser above T=80K,
Appl. Phys. Lett
., 67 (21), pp. 3057-3069 (Nov. 20, 1995), J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybersten, and A. Y. Cho, ‘Qua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor nitride structures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor nitride structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor nitride structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3008216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.