Static information storage and retrieval – Floating gate – Particular connection
Patent
1998-12-23
2000-02-29
Phan, Trong
Static information storage and retrieval
Floating gate
Particular connection
36518511, 365200, G11C 1606, G11C 1604, G11C 700
Patent
active
060317582
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
The present invention relates in general to a semiconductor memory device in which an electrically reloadable nonvolatile semiconductor memory is used as a storage medium, and more particularly to a semiconductor memory device employing a semiconductor memory which includes partially faulty cells and which becomes faulty if the reloadable operation is carried out at frequent intervals.
BACKGROUND ART
An electrically reloadable nonvolatile memory has more advantageous features as a memory device of an information apparatus in terms of the low power consumption, the resistance against the vibrational shock, the high speed operation and the like as compared with other devices such as a magnetic memory device and an optical disc device. On the other hand, however, since the manufacturing process thereof is complicated and in addition thereto, the operations which are in principle irreversible against semiconductor are repeatedly carried out, there arises a problem that occurrence of faulty portions and degradation in use thereof are remarkable. As a result, the manufacturing yield thereof is poor, the cost required therefor is expensive and reliability in operation thereof becomes a problem.
In order to solve the above-mentioned problems, the technique has been developed such that the faulty portions of the memory are previously registrated so as not to be used, and the number of times of use of the data blocks is recorded and then if this number of times is increased, then the region of interest is replaced with another region to suppress the increase in the number of times of use thereof, thereby increasing the life of the semiconductor memory device. This technique is disclosed in JP-A-6-124596 for example.
According to this disclosed technique, there is provided a memory for storing therein an address conversion table showing the comparison between the logical addresses and the physical addresses, i.e., the correspondence between the logical address specified by a host and the corresponding physical address on the memory. As a result, the physical address of the faulty region is registered in the address conversion table so as to show that it is faulty so that the logical address specified by the host is not assigned thereto, thereby preventing the faulty portion from being used.
In addition, the number of times of erasing is administrated. That is, if the number of times of erasing has reached a fixed value, then the data of the region of interest is replaced with the data of another region and at the same time, the address values on the address conversion table are reloaded to register again the data relating to the correspondence between the logical addresses and the physical addresses so that the proper correspondence therebetween can be obtained. All of the logical address values in use are registered in the above-mentioned address conversion table. Then, the high speed volatile memory such as a DRAM or an SRAM is used as the storage medium for the address conversion table.
The reason of employing the high speed volatile memory is that the address conversion can be carried out at a high speed; when the replacement of the address of interest with another address occurs, the registration can be partially reloaded at a high speed; the mass storage of the data can be realized by utilizing the relatively inexpensive memory; and so forth.
In the above-mentioned prior art, since the registration of the address conversion is carried out with respect to all of the logical addresses, when the memory device becomes of mass storage, the scale of the address conversion table becomes large and hence the mass storage memory for registration is required. In addition, since the memory device is of a volatile type, if the power source is disconnected, then all of the data stored therein will be erased. As a result, when turning on the power source again, all of the registered values need to be written thereto from another nonvolatile memory and hence the time period required for the activation of th
REFERENCES:
patent: 5123016 (1992-06-01), Muller et al.
Inoue Kiyoshi
Katayama Kunihiro
Naito Masashi
Shiota Shigemasa
Tamura Takayuki
Hitachi , Ltd.
Phan Trong
LandOfFree
Semiconductor memory device having faulty cells does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor memory device having faulty cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory device having faulty cells will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-688854