Semiconductor memory device

Static information storage and retrieval – Addressing – Sync/clocking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S189040

Reexamination Certificate

active

06606277

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention mainly relates to an effective technique for a high-speed prefetch type DRAM (dynamic random access memory) for 3D graphics.
Semiconductor memory devices are increasingly being required to perform high-speed operations due to improvements in speed accompanying technical progress of electronic systems. Synchronous semiconductor memory devices such as SDRAM (Synchronous DRAM) are capable of performing operations in a comparatively short cycle time irrespective of the period of a sequence of operations of internal circuits.
SUMMARY OF THE INVENTION
When performing read operations or write operations on a semiconductor memory device, these operations may be speeded up by an operating parallel arrangement due to a pipeline operation of the internal circuit which forms the semiconductor memory device. On the other hand, when the semiconductor memory device is required to perform read operations and write operations alternately without a break, the problem arises that the operating speed will be largely restricted.
That is, when it is desired to perform the above alternate operations, for read-out, read data must be transferred to the external after completing internal operations of the semiconductor memory device, and write data must be transferred from the external before internal write operations are performed. Hence, when it is attempted to continuously perform internal operations for read and write, the timings of data output to the external and data input from the external overlap. When the semiconductor memory device has a common data input/output terminal, i.e., when it complies with a bi-directional bus, this overlap of data output and data input timings is not permitted.
Therefore, when the above read operation and write operation are performed alternately, it is necessary to set a latency time for internal operations so that overlap of read data transfer timing and write data transfer timing is avoided. As a result, the aforesaid operating speed or throughput is largely restricted.
In the field of 3D graphics, a high-speed semiconductor memory device is desired. In this field, images are becoming finer with one image comprising a very large number of polygons comprising a very small number of pixels, e.g., about 1 to 5. In many cases, to generate such an image, the Z buffer method is used. In the Z buffer method, a Z value which is depth data is added to each pixel on the image buffer, and compared with the Z value already written when the pixel was written. Additions are made only to pixels further in front, so only planes visible from the viewpoint of overlapping objects are generated on the image buffer.
When using the Z buffer method, before writing the first pixel, it is necessary to initialize all the Z buffers at least by “the value which represents the furthest.” Otherwise, it may occur that a pixel which should actually be written cannot be written due to the wrong Z value. Also, it is necessary to fill in pixel data with “the furthest color”, i.e., a background color. As the whole screen is not necessarily covered by polygons, this is necessary to prevent pixel values which were not written when the image was generated from being indeterminate.
In a Z buffer algorithm 3D graphic system, when image data and Z data are stored in mutual addresses of the semiconductor memory device and only continuous data can be accessed, even during access such as screen refresh which does not need Z buffer data, useless Z buffer data is accessed and the effective transmission efficiency falls. This poses a problem in 3D graphic systems which require high-speed processing. The inventor thus developed a memory function for actual systems suited to this type of image generation.
From research of the literature, the Inventor found Japanese Laid-Open Published Patent Application No. 45567 of 1999 (referred to hereafter as prior art). In this prior art, in SDRAM (Synchronous DRAM), if there is a difference in the latency of a read operation and the latency of a write operation, and it is attempted to perform a write operation after a read operation, the write command cannot be input until the read data is output, and there will be a decline in the effective bandwidth of the data input/output terminal. In order to resolve the problem of bandwidth decrease, when the command immediately prior to the write command is a read command, the output signal of an intermediate data amplifier is stored in a temporary register, the read operation of a DRAM cell is suspended, the write data is input and written, the data evacuated to the temporary register after write termination is output to a data out latch, and the read operation is resumed by a clock signal. However, in this prior art, there is no mention of the bus control for actual systems oriented towards high-speed image processing according to this invention which is described hereafter.
In the above prior arts, read data which was not yet output is held by three storage means, i.e., a data amplifier, the temporary register and a data output latch, and the read data stored in the temporary register is output due to resumption of the read operation.
In this case, the input of a read command is needed for resumption of the read operation, and read data corresponding to this read command is also output after the resumed read data. Therefore, a read command must be input as a dummy command even when it is desired to output only the read data which has not yet been output, corresponding unnecessary read data will be output with a delay of plural clocks, and the bus will be occupied to output the unnecessary data.
Moreover, according to the data input/output operation of the prior art, write data will be input by the clock immediately after the read data was output. As a signal delay occurs in data transfer on the bus, in the memory circuit as shown in timing charts such as FIG.
2
and
FIG. 3
of the prior art, write data is input by the clock following data output, so competition of read data and write data on the bus cannot be avoided. Hence, there is a very strong possibility that a signal error will arise due to competition between the read data and write data.
It is therefore an object of this invention to provide a semiconductor memory device which offers an improvement in speed and multi-functionality of operation.
It is another object of this invention to provide a suitable semiconductor memory device for 3D picture generation.
It is yet another object of this invention to provide a semiconductor memory device which aims at improved user-friendliness in addition to improvement in operating speed.
The above objects, other objects and new features of this invention will become clear from the description and accompany drawings of this specification.
The essential features of this invention as disclosed in this application may be simply described as follows. In a data read operation, read data is output to a data terminal in synchronism with a synchronization signal, and in a data write operation, write data is input via this data terminal in synchronism with a synchronization signal. The input of write data via the data terminal is permitted within a first time period when the output of this read data to the data terminal should be performed. Further, a second time period from when a write operation is specified to when input of write data is started, and a third time period when the input of the write data is performed, are provided, and the output of the read data to the data terminal is permitted within the second time period.
The other essential features of this invention as disclosed in this application may be simply described as follows. The semiconductor memory device comprises a bi-directional interface which performs read and write data transfer in synchronism with a clock signal, plural memory mats each forming a bank which can operate independently, and a mechanism which lowers a word line in a memory mat in which read or write is performed in a bank specified by the aforesaid read or w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor memory device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor memory device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129003

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.