Semiconductor diode

Active solid-state devices (e.g. – transistors – solid-state diode – Schottky barrier – In voltage variable capacitance diode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06339249

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a semiconductor diode having two electrodes that form a cathode and an anode.
The invention furthermore relates to an electrical circuit containing at least one semiconductor diode having two electrodes that form the cathode and the anode.
Diodes are asymmetrically constructed two-terminal networks whose resistance depends on a polarity and a magnitude of an applied voltage. Diodes are composed of two different materials, at least one material of which is a semiconductor. The different materials may be a semiconductor and a metal, or a semiconductor with differently doped regions. The differently doped regions generally contain p-doped and n-doped regions of the same semiconductor.
The following are known diodes: switching diodes, Schottky diodes, rectifier diodes, zener diodes, diacs, photodiodes, variable-capacitance diodes, PIN diodes, step recovery diodes, tunnel diodes, backward diodes.
It is known that a capacitance between the electrodes themselves and also between the individual electrodes and the substrate on which they are disposed is effected by two different mechanisms. The depletion layer capacitance and the diffusion capacitance are involved in this case.
The depletion layer capacitance arises from the fact that only a small saturation current flows in the case of a reverse-biased pn junction. A space charge is additionally present. Therefore, a reverse-biased diode acts like a lossy capacitor. As the reverse voltage increases, the depletion layer is widened. Therefore, the charge carrier depletion at the pn junction increases. It follows from this that the depletion layer capacitance C
s
decreases as the reverse voltage U
r
increases. When the reverse voltage U
r
=0, the depletion layer capacitance C
s
has its maximum value. The following holds true for the maximum depletion layer capacitance C
smax
:
C
s



max
=
C
s

(
U
r
=
0
)
=
C
s



o
=
A
·
ϵ
0
·
ϵ
r
·
e
2

&LeftBracketingBar;
U
d
&RightBracketingBar;
·
[
1
n
A
+
1
n
D
]
In this case, A is a cross-sectional area of the depletion layer and &egr;
r
is a relative permittivity. For germanium it is E
r,Ge
≈16, and for silicon it is E
r,Si
≈20. The dependence of C
s
as a function of the reverse voltage U
r
is approximately given by the following relationship:
C
s
=
C
s



o
1
+
U
t
U
D
The diffusion capacitance corresponds to an internal inertia of the diode, which is principally caused by the inertia of minority charge carriers in bulk regions. If the diode is operated in a forward mode, then both majority and minority carrier currents flow in the bulk regions. Although the zones are intrinsically electrically neutral, the electrons or hole charges are fed in and conducted away by separate currents (field current or diffusion current). In the event of small, rapid changes to the forward voltage, this mechanism acts like a capacitance on account of its inertia. It is referred to as the diffusion capacitance C
d
. The diffusion capacitance C
d
is proportional to the forward current I
d
and amounts to:
C
d
=
e
·
A
2
·
U
T
·
&LeftBracketingBar;
I
s
&RightBracketingBar;
·
(
L
P
+
L
N
)
·
n
A
·
n
D
n
A
+
n
D
·
I
d
The diffusion capacitance plays a part in fast switching operations in which a diode in the on state is abruptly changed to the off state.
The stored charges in the bulk regions can then disappear only by recombination, and the voltage across the diode decreases approximately exponentially.
From these equations it follows directly that the entire capacitance is proportional to a cross-sectional area of the depletion layer. For this reason, the known semiconductor diodes have linear cathode regions in which the cross-sectional area of the depletion layer is minimal. In the case of the known diodes, the capacitance cannot be reduced to a greater extent. This becomes apparent in an interfering manner principally when the diodes are used with high-frequency signals.
Electrostatic discharge (ESD) protective diodes serve to protect an electronic component, for example a field-effect transistor, or an electrical circuit against irreversible damage caused by an electrostatic discharge, without impairing the function too much. In order to fulfill this protection function, the protective diode is connected between the component to be protected or the circuit to be protected and a grounding potential. Since the protective diode is reverse-biased, only a small reverse current flows through it. It is necessary that the diode have the smallest possible capacitance, in order that the high-frequency signal is attenuated as little as possible. The known diodes have the disadvantage that their capacitance is so high that the high-frequency signal is attenuated and distorted to an excessively great extent.
A diode with a circular electrode geometry is disclosed in the article titled “The Breakdown Voltage Of Negative Curvatured p
+
n Diodes Using a SOI Layer”, Solid-State Electronics, Vol. 41, No. 5, pp. 787-788, 1997. The article relates to diodes with large electrode areas. In this case, the inner electrode has an area of as much as above 20,000 &mgr;m
2
. A circular electrode geometry was chosen in this case in order to obtain spatially independent breakdown voltages.
A diode with a circular electrode geometry is furthermore disclosed in PCT patent application WO 95/22842. Although this document likewise relates to curved electrodes, in this case the surface area of the curved outer electrode is significantly less than the area of the other, inner electrode. A surface area limit of 15 &mgr;m
2
is exceeded to a considerable extent.
A diode with a circular electrode geometry is also disclosed in Published, Non-Prosecuted German Patent Application DE 43 26 846 A1. This document likewise relates to curved electrodes, but in this case the surface area of the curved outer electrode is significantly less than the area of the other, inner electrode. The surface area limit of 15 &mgr;m
2
is likewise exceeded to a considerable extent.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a semiconductor diode that overcomes the above-mentioned disadvantages of the prior art devices of this general type, in which the smallest possible capacitance is obtained between the electrodes and also between the individual electrodes and the substrate.
With the foregoing and other objects in view there is provided, in accordance with the invention, a semiconductor diode, containing two electrodes forming a cathode and an anode. At least one of the electrodes is a curved electrode having an inner edge length and another of the electrodes is an inner electrode having a width and a surface area of at most 20% of a product of the width of the inner electrode and the inner edge length of the curved electrode. The curved electrode has a surface area and the surface area of the inner electrode amounts to at most 20% of the surface area of the curved electrode, and the surface area of the inner electrode is at most 15 &mgr;m
2
.
In the case of a semiconductor diode of the generic type, the object is achieved according to the invention by virtue of the fact that at least one of the electrodes is curved. The surface area of the other, inner electrode amounts to at most 20% of the product of the width of the inner electrode and the inner edge length of the curved, outer electrode. The surface area of the inner electrode amounts to at most 20% of the surface area of the curved electrode, and that the inner electrode has a surface area of at most 15 &mgr;m
2
.
The invention thus provides for a semiconductor diode to be provided in which the inner electrode has a surface area of at most 15 &mgr;m
2
and, in accordance with the further features of the characterizing part, is chosen to be deliberately smaller than the outer, curved electrode.
The o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor diode does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor diode, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor diode will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2827088

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.