Semiconductor devices and methods

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S009000, C257S011000, C257SE29003, C257S007000, C257S071000

Reexamination Certificate

active

10805454

ABSTRACT:
A method of forming a semiconductor device includes the following steps: providing a plurality of semiconductor layers; providing means for coupling signals to and/or from layers of the device; providing a quantum well disposed between adjacent layers of the device; and providing a layer of quantum dots disposed in one of the adjacent layers, and spaced from the quantum well, whereby carriers can tunnel in either direction between the quantum well and the quantum dots.

REFERENCES:
patent: 4575924 (1986-03-01), Reed et al.
patent: 5198879 (1993-03-01), Ohshima
patent: 5202290 (1993-04-01), Moskovits
patent: 5509024 (1996-04-01), Bour et al.
patent: 5657189 (1997-08-01), Sandhu
patent: 5714766 (1998-02-01), Chen et al.
patent: 5909614 (1999-06-01), Krivoshiykov
patent: 5936258 (1999-08-01), Imamura et al.
patent: 5936266 (1999-08-01), Holonyak, Jr. et al.
patent: 6346431 (2002-02-01), Yoo et al.
patent: 6369403 (2002-04-01), Holonyak
patent: 6407439 (2002-06-01), Hier et al.
patent: 6445000 (2002-09-01), Masalkar et al.
patent: 6455870 (2002-09-01), Wang et al.
patent: 6541788 (2003-04-01), Petroff et al.
patent: 6645885 (2003-11-01), Chua et al.
patent: 2002/0079485 (2002-06-01), Stintz et al.
patent: 2003/0059998 (2003-03-01), Holonyak et al.
patent: 2341722 (2000-03-01), None
P.G. Eliseev, H.Li, A. Stintz, G.T. Liu, T.C. Newell, K.J. Malloy, and L.F. Lester, “Transition Dipole Moment Of InAs/InGaAs Quantum Dots From Experiments On Ultralow-Threshold Laser Diodes”, Applied Physics Letters, vol. 77, No. 2, Jul. 10, 2000.
G. Walter, N. Holonyak, Jr., R. Heller and R.D. Dupuis, “Visible Spectrum (654 mn) Room Temperature Continuous Wave (cw) InP Quantum Dot Coupled To InGaP Quantum Well InP-InGaP-In(AlGA)P-InAI1P Heterostructure Laser”, Appl. Phys. Lett., vol. 81, No. 24, Dec. 9, 2002.
E.A. Rezek, H. Shichijo, B.A. Vojak, and N. Holonyak, Jr., “Confined-Carrier Luminescence of a Thin In1-xGaxP1-2AszWell (X ˜ 0.13, z ˜ 0.29; ˜ 400 Å) in an InP p-n Junction,” Appl. Phys. Lett., vol. 31 pp. 534-536, Oct. 15, 1977).
J.H. Ryou, R. Dupuis, N. Holonyak, et al. “Photopumped Red-Emitting InP/In0.5Al0.3Ga0.2P Self-Assembled Quantum Dot Heterostructure Lasers Grown By Metaloroganic Chemical Vapor Deposition”, Appl. Phys. Lett. 78, 4091-4093, Jun. 25, 2001.
T. Richard, E. Chen, A. Sugg, G. Hofler, and N. Holonyak, “High Current Density Carbon-Doped Strained-Layer GaAs (p+)—InGaAs(n+)—GaAs(n+)p-n Tunnel Diodes”, Appl. Phys. Letter. 63, 3616 (Dec. 27, 1993).
H. Saito et al., “Room Temperature Lasing Operation Of A Quantum Dot Vertical Cavity Surface Emitting Laser”, Appl. Phys. Lett. 69 (21), Nov. 18, 1996.
M. Maximov et al., “High Power Continuous Wave Operation InGaAs/AlGaAs Quantum Dot Laser”, J. Appl. Phys., 83, 10, May, 1998.
G. Walter, N. Holonyak, J. Ryou and R. Dupuis, “Room-Temperature Continuous Photopumped Laser Operation Of Coupled InP Quantum Dot And InGaP Quantum Well InP-In(AlGa)P-InA1P Heterostructures”, Appl. Phys. Lett. 79, 1956 (Sep. 24, 2001).
G. Walter, H. Holonyak, J. Ryou and R. Dupuis, “Coupled InP Quantum Dot InGaP Quantum Well InP-In(AlGa)P-InA1P Heterostructure Diode Laser Operation”, Appl. Phys. Lett. 79, 3215 (Nov. 2001).
G. Walter, T. Chung, and N. Holonyak, Jr., “High Gain Coupled InGaAs Quantum Well InAs Quantum Dot AlGaAs-GaAs-InGaAs-InAs Heterostructure Diode Laser Operation”, Appl. Phys. Lett. 80, 1126 (Feb. 2002).
T. Chung, G. Walter, and N. Holonyak, Jr., “Coupled Strained-Layer InGaAs Quantum-Well Improvement Of An InAs Quantum Dot AlGaAs-GaAs-InAs Heterostructure Laser”, Appl. Phys. Lett., 79, 4500 (Dec. 2001).
S. Chuang and N. Holonyak, “Efficient Quantum Well To Quantum Dot Tunneling: Analytical Solutions”, Appl. Phys. Lett. 80, 1270 (Feb. 2002).
J.M. Dallesasse, N. Holonyak, Jr., A.R. Sugg, T.A. Richard, and N. El-Zein, Appl. Phys. Lett. 57, 2844 (1990).
S. Weber, W. Limmer, K. Thonke, R. Sauer, K. Panzlaff, G. Bacher, H. P. Meier, and P. Roentgen, Phys. Rev. B 52, 14739 (1995).
M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, Phys. Rev. B 46, 6922 (1992).
W. J. Turner, W. E. Reese, and G. D. Pettit, Phys. Rev. 136, A1467 (1964).
X. B. Zhang, K. L. Ha, and S. K. Hark, J. Electron. Mater. 30, 1332 (2001).
L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, Appl. Phys. Lett. 69, 3354, (1996).
E. F. Schubert “Delta-Doping Of Semiconductors” (book), Cambridge University Press.
L.V. Asryan and S. Luryi, “Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability”, IEEE Journal of Quantum Electronics, vol. 37, pp. 905-910 (Jul. 2001).
A.F. Tsatsul'nikov, A.Yu. Egorov, A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, N.N. Ledentsov, M.V. Maksimov, A.V. Sakharow, A.A. Suvorova, P.S. Kop'ev, and Zh.I. Alferov “Modulation Of A Quantum Well Potential By A Quantum Dot Array”, Semiconductors 31, 88-91 (1997).
M.V. Maximov, L.V. Asryan, Yu.M. Shernyakov, A.F. Tsatsul'nikov, I.N. Kaiander, V.V. Nikolaev, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, A.E. Zhukov, Zh.I. Alferov, N.N. Ledenstov, and D.Bimberg, “Gain and Threshold Characteristics Of Long Wavelength Lasers Based On InAs/GaAs Quantum dots Formed By Activated Alloy Phase Separation”, IEEE Journal Of Quantum Electronics, vol. 37, No. 5, May 2001.
E.A. Rezek, N. Holonyak, Jr., B.A. Vojak, G.E. Stillman, J.A. Rossi, D.L. Keune, and J.D. Fairing, “LPE In1-xGaxP1-zAsz(x ˜ 0.12,z ˜ 0.26) DH Laser With Multiple Thin-Layer (< 500 Å) Active Region”, Appl. Phys. Lett., vol. 31, pp. 288-290, Aug. 15, 1977.
G.T. Liu. A. Stintz, H.Li, K.J. Malloy and L.F. Lester, “Extremely Low Room Temperature Threshold Current Density Diode Lasers Using InAs Dots in In0.15Ga0.85As Quantum Well”, Electronics Letters, vol. 35 No. 14 Jul. 8, 1999.
G.T. Liu, A. Stintz, H. Li, T.C. Newell, A.L. Gray, P.M. Varangis, K.J. Malloy, and L.F. Lester, “The Influence Of Quantum-Well Composition On The Performance Of Quantum Dot Lasers Using InAs/InGaAs Dots-In-A-Well (DWELL) Structures”, IEEE Journal Of Quantum Electronics, vol. 36, No. 11, Nov. 2000.
A. Stintz, G.T. Liu, Student member, IEEE, H.Li, L.F. Lester, Member, IEEE, and K.J. Malloy, Member IEEE, “Low-Threshold Current Density 1.3μm InAs Quantum-Dot Lasers With The Dots-In-A-Well (DWELL) Structure”, IEEE Photonics Technology Letters, vol. 12, No. 6, Jun. 2000.
J.H. Ryou, R.D. Dupuis, G. Walter, N. Holonyak, Jr., D.T. Mathes, R. Hull, C.V.. Reddy and V. Narayanamurti, “Properties Of InP Self-Assembled Quantum Dots embedded In In0.49(AlxGa1-x)0.51P For Visible Light Emitting Laser Applications Grown By Metalorganic Chemical Vapor Deposition”, Journal Of Applied Physics, vol. 91, No. 8, Apr. 15, 2002.
Thean et al, “Three-dimensional Self-consistant Simulation of Interface and Dopant Disorders in Delta-doped Grid Quantum Dot Devices” J.Appl. Phy 82(4), Aug. 15, 1997.
Heller et al., “Low Threshhold Room Temperature Continuous Wave InP Quantum Dot Coupled to InGaP Quantum Well Heterostructure Laser Grown by MOCVD” (2003 IEEE), conference article.
Ranjan, “Shallow Impurities And Delta Doping In Quantum Dot And Quantum Well Systems”, Journal of Condensed Matter, (13) (2001) 8105-8119.
Asryan et al., “Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability” IEEE Journal of Quantum Electronics, vol. 37, No. 7 pp. 905-909, Jul., 2001.
Nien-Tze Yeh et al., “Self-Assembled In0.5Ga0.5As Quantum-Dot Lasers With Doped Active Region”, IEEE Photonics Technology Letters, IEEE USA, vol. 12, No. 9, Sep. 2000, pp. 1123-1125.
Liu GT et al. “The Influence Of Quantum-Well Composition On The Performance Of Quantum Dot Lasers Using InAs-InGaAs D

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor devices and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor devices and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor devices and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3854848

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.