Semiconductor device and method of manufacturing the same

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified material other than unalloyed aluminum

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S077000

Reexamination Certificate

active

06271594

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a semiconductor device and a method of manufacturing the same, and in particular, to a method of forming an interlayer insulating film of a MOSFET.
When a bias voltage is applied to a MOSFET, a threshold voltage, a mutual induction and an on-current are often variable with time. This phenomenon is generally called a hot carrier effect, that reduces the reliability of a device.
Recently, the hot carrier effect often becomes remarkable when a gate length of the device is less than 1 &mgr;m. This hot carrier effect becomes a serious restriction factor to miniaturize the MOSFET. In particular, a gate oxide film is often destroyed by the hot carrier effect. The destruction of the gate oxide film becomes a large problem to miniaturize the transistor, and will be thereinafter referred to as a hot carrier deterioration.
The hot carrier effect is mainly caused by Si—H combinations which become the cause of the hot carrier deterioration. More specifically, water (H
2
O) diffuses into the gate oxide film to increase the Si—H combinations. This fact has been described in the 48th symposium lecture with respect to a semiconductor integrated circuit technique (water diffusion model for an increase effect of the hot carrier deterioration due to a nitride film passivation, P.134).
To avoid the above problem, a method has been suggested for preventing invasion of the water into a LSI by using the silicon nitride (SiN) film. In this event, the silicon nitride film has an excessively small diffusion factor against the water as a protection film of a parasitic-mold LSI.
A semiconductor device generally has a silicon oxide films for device separation and diffusion layers or regions in a silicon substrate, and will be referred to as a first conventional reference. Further, the gate oxide film is deposited between the diffusion layers and on the silicon substrate. Further, a gate electrode is placed on the gate oxide film. Moreover, spacer oxide films are placed at both side surfaces of the gate electrode.
In this event, metal silicide layers each of which has a high melting point are formed on the surfaces of the diffusion layers and on the gate electrode, respectively. The metal silicide layer often becomes essential to miniaturize the semiconductor device. Further, a silicon oxide film is deposited to cover the silicon oxide films, diffusion layers and the gate electrode, as an interlayer insulating film.
Moreover, metal plugs are formed in the silicon oxide film so as to reach the silicide layers. Further, wiring patterns are formed on the upper surface of the metal plugs. Under this condition, the silicide layers are electrically connected to the wiring patterns via the metal plugs. Finally, the entire surface of the device is covered with the silicon nitride film as a passivation film.
When the silicon nitride film is deposited using the plasma CVD method, the silicon nitride film has a relatively small water-permeability in many cases. However, the problem with respect to the hot carrier deterioration can not be solved in the first conventional reference. Namely, active hydrogen radicals take place when the silicon nitride film is formed in a plasma atmosphere containing ammonia and silane. It has been reported that the hydrogen radicals diffuse the gate oxide film to increase the Si—H combinations which becomes the cause of the deterioration.
On the other hand, when an interlayer insulating film, such as the silicon oxide film, is formed by a SOG (spin on glass) film , the interlayer insulating film normally contains slight water. However, the SiN film does not pass the water through because the silicon nitride film has a relatively small water-permeability, as mentioned before. Consequently, the water in the interlayer insulating film mostly diffuses in the direction of the gate oxide film during a final heat treatment in foaming gas.
Thus, when the water diffuses toward the gate oxide film and the spacer oxide film, an electron trap (namely, water related trap) caused by the water in the oxide film. As a result, the hot carrier-resist is largely reduced. This fact has also been described in the above-mentioned 48th symposium lecture with respect to a semiconductor integrated circuit technique (the water diffusion model for the increasing effect of the hot carrier deterioration due to the nitride film passivation, P.134).
To avoid such a problem, another suggestion has been made about a semiconductor device in which, the silicon nitride film is placed below the silicon oxide film (namely, the interlayer insulating film). Herein, the above semiconductor device will be referred to as a conventional second reference.
With such a structure, when the silicon nitride film is formed by the use of the thermal decomposition CVD method, the diffusion of the water is suppressed because the generation of the active hydrogen radicals is prevented during the formation of the silicon nitride film.
However, the thermal process temperature which is necessary for the thermal decomposition containing the ammonia and the silane is higher than the deposition temperature of the plasma method. Consequently, the heat resistance of the silicide layer becomes a problem. Namely, the short channel effect must be suppressed by preventing the diffusion of the impurities doped in the diffusion layer to achieve high integration.
When the connection surface of the diffusion layer contacts with the silicide layer, a leak current which is caused by crystal defects is increased, and as a result, the switching operation of the transistor becomes impossible. Therefore, the above silicide layer must be thinned in accordance with the shallow connection of the diffusion layer.
However, when the deposition temperature of the silicon nitride film exceeds the heat resistance of the silicide in case of the thin-film silicide which is necessary to miniaturize the transistor, the silicide layer is aggregated to form a discontinues film. As a result, disconnection takes place, and the sheet resistance is largely increased.
SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide a semiconductor device which is highly integrated and which is capable of effectively reducing a hot carrier deterioration while keeping a low resistance even when thin-film silicide layers are placed on the surfaces of diffusion layers and a gate electrode.
It is another object of this invention to provide a semiconductor device which has a high reliability and which is capable of enduring against a stress from an oxide silicon film.
In a semiconductor device according to this invention, a pair of diffusion layers is placed in a silicon substrate. Herein, the diffusion layers serve as source and drain regions. Further, a gate oxide film is formed between the diffusion layers and on the silicon substrate. Moreover, a gate electrode is placed on the gate oxide film. In addition, a diamond-like carbon layer is formed over the silicon substrate so as to cover at least the gate oxide film. With such a structure, the diamond-like carbon layer prevents water from diffusing into the gate oxide film.
According to this invention, a diamond-like carbon layer which does not pass through water is formed so as to contact with diffusion layers and a gate electrode having silicide layers on the surface. Consequently, Si—H combinations are not increasingly formed in the gate oxide film or the spacer film. Further, water can be prevented from diffusing into the gate oxide film or the spacer film from the interlayer insulating film in the subsequent heat process. As a result, hot carrier deterioration can be effectively prevented.
More specifically, hot carrier deterioration can be effectively reduced while keeping a low resistance in the semiconductor device which has the gate oxide film having the film thickness of 10 nm or less and which is used in a fine MOSFET having the gate length of 1 &mgr;m or less. Further, the semiconductor device having high reliability can be obtained, even when the thin-fil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device and method of manufacturing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device and method of manufacturing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and method of manufacturing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2515340

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.