Semiconductor device and method for making the same

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Assembly of plural semiconductive substrates each possessing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S107000, C438S109000

Reexamination Certificate

active

06413797

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a semiconductor device, and a method for making the same. More particularly, the present invention relates to a semiconductor device containing such a semiconductor chip as a ferroelectric random access memory which will become unstable in operation under a high temperature, and a method for making such a semiconductor device.
2. Background Art
Much effort is being made in recent years in developing a nonvolatile memory utilizing the spontaneous polarization behavior of a ferroelectrics having a high dielectric constant. This type of memory is usually called the ferroelectric random access memory (hereinafter called FRAM). The FRAM has a construction in which a planer type ferroelectric capacitor is formed on a layer of a common CMOS transistor. The FRAM enables overwriting of stored information at an extremely high speed and at a low voltage by reversing the direction of polarization.
However, when heated, the ferroelectrics used in the FRAM loses the ferroelectricity above a certain temperature (Curie temperature), and becomes paraelectric in which state the spontaneous polarization will not occur. A common Curie temperature of the ferroelectrics used in the FRAM is 170-180 degrees Celsius. If the FRAM containing such a ferroelectrics is heated to this Curie temperature or above, the memory operation becomes unstable, or the memory will no longer operate. In other words, the FRAM is susceptible to heat.
On the other hand, not only the FRAM but also the semiconductor chip in general includes pieces of metal wire for example, for establishing electrical connection between electrodes of the semiconductor chip and external components such as inner leads of the lead frame and a circuit pattern formed on a substrate. This type of electrical connection using the metal wire is commonly performed by a method such as thermocompression bonding or ultrasonic bonding.
The thermocompression bonding is performed as follows. Specifically, a component element to which the bonding is to be made is heated to a relatively high temperature (about 400 degrees Celsius). Then, the metal wire is pressed onto a wirebonding region. However, this method is not suitable for wirebonding to a semiconductor chip which is susceptible to heat, because the semiconductor chip has to be heated up to 400 degrees Celsius. On the other hand,the ultrasonic bonding is performed without heating the component element to be bonded. Specifically, the metal wire is first pressed onto the bonding region, and then ultrasonic wave is applied. However, the ultrasonic bonding method is disadvantageous in that an intense ultrasonic wave can break the wire.
In order to compensate for the above shortcomings in the thermocompression bonding and the ultrasonic bonding, thermosonic bonding is often employed. Specifically, the component element to be bonded is heated only to a relatively low temperature (about 200 degrees Celsius). Then, the metal wire is pressed onto the bonding region, and ultrasonic wave of moderate intensity is applied.
Still however, the thermosonic bonding is only suitable for wirebonding a common type of semiconductors because the semiconductor chip must be heated to about 200 degrees Celsius. The thermosonic bonding is still not suitable for wirebonding a semiconductor chip such as the FRAM which is extremely susceptible to heat, becoming very unstable in operation if heated to 170-180 degrees Celsius.
There is another problem. Specifically, a surface of the semiconductor chip is commonly formed with bonding pads for wirebonding. These pads are formed by aluminum for example. However, aluminum is easily oxidized to form a coat of oxide, which weakens the bond between the bonding pad and the wire. This problem becomes more significant at a higher bonding temperature, and in order to remove the coat of oxide, the ultrasonic wave of a greater intensity must be applied at a risk of breaking the metal wire.
DESCLOSURE OF THE INVENTION
It is therefore an object of the present invention to provide a semiconductor device in which the electrode of the semiconductor chip and the component element to be connected with the electrode are connected appropriately with each other without damaging a property of the semiconductor chip.
Another object of the present invention is to provide a semiconductor device including a ferroelectric memory chip in which the electrode of this memory chip and the component element to be connected with the electrode are connected appropriately with each other without heating the ferroelectric memory chip beyond a predetermined temperature.
According to a first aspect of the present invention, there is provided a semiconductor device having a following arrangement.
Specifically, the semiconductor device comprises a semiconductor chip having a main surface formed with an electrode pad, a package containing the semiconductor chip, a component element electrically connected with the electrode pad within the package, a gold bump formed on the electrode pad, and a gold wire having an end bonded to the gold bump and the other end bonded to the component.
According to the above arrangement, the electrode pad conventionally formed by aluminum is covered by the gold bump. This eliminates need for such an operation at the time of wirebonding as removing a coat of oxide formed on the electrode pad. Thus, there is no need for applying a large amount of energy at the time of wirebonding such as applying intense ultrasonic wave for removing the coat of oxide, or heating the semiconductor chip to a high temperature. Further, at the time of wirebonding, the gold bump absorbs part of pressure applied by the capillary. Thus, the semiconductor chips are better protected from damage caused by the wirebonding operation. Still further, the wire made of gold is bonded to the electrode pad made of gold. Since this bond is made between the same kind of metal, only a smaller amount of energy is necessary to achieve the bonding. Still further, the bond is not susceptible to oxidization, and therefore can keep a good quality of connection.
According to a preferred embodiment, the component element is another semiconductor chip. This another semiconductor chip is formed with an electrode pad formed with a gold bump thereon. The other end of the wire is bonded to the gold bump of said another semiconductor chip.
According to another preferred embodiment, the component element is a substrate. The substrate is provided with a terminal portion, and the other end of the wire is bonded to the terminal portion.
According to the preferred embodiment, the semiconductor chip is a ferroelectric memory chip. The ferroelectric memory chip is a nonvolatile memory chip utilizing the spontaneous polarization behavior of a ferroelectrics having a high dielectric constant. This type of memory enables overwriting of stored information at an extremely high speed and at a low voltage, by reversing the direction of polarization. The ferroelectrics used in the ferroelectric memory chip is susceptible to heat (becoming unable to polarize spontaneously at a temperature of 170-180 degrees Celsius). For this reason, the ferroelectric memory chip becomes unstable in operation once heated above a specific temperature. According to the present invention, in order to achieve the wirebonding between the electrode pad and the gold wire, a smaller amount of energy may be applied as described above. For example, the heating temperature may be about 100 degrees Celsius, and the ultrasonic wave may be less intense. Thus, it is possible to establish an appropriate electric connection between the ferroelectric memory chip and a component element to be connected to the ferroelectric memory chip, without the risk of damaging the operational stability of the ferroelectric memory chip.
According to a second aspect of the present invention, there is provided a semiconductor device having a following arrangement.
Specifically, the semiconductor device comprises a first semicondu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device and method for making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device and method for making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and method for making the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.