Semiconductor device

Active solid-state devices (e.g. – transistors – solid-state diode – Gate arrays – Having specific type of active device

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257207, 257369, 257390, H01L 2710

Patent

active

055170412

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

This invention relates generally to a semiconductor device. In particular, it relates to a master slice type gate array that uses a plurality of insulated gate field effect transistors (MIS transistors) as the basic cells.
The internal chip structure in the channel-less gate array of the prior art is composed of columns of cells in which a plurality of basic cells in the center of the silicon chip are arranged in regular horizontal and vertical rows. A plurality of input and output buffers surround the periphery of the silicon chip. In a gate array, the structure of the basic cells is important in terms of configuring the desired logic gates and logic blocks through wiring connections. One known example of a basic cell structure is disclosed in Japanese Patent No. 16174/91, as shown in FIG. 14.
As shown, basic cell 1 runs along well 2, which has a symmetrical shape from top to bottom and left to right, and along radial lines 1.sub.1 to 1.sub.4, which are centered on center point Q of well 2 gate surface. In addition, except for the area around center point Q, the basic cell has gate electrodes 3 formed on top of well 2. Each section of well 2 that is partitioned by gate electrode 3 is alternately in source region S and drain region D.
In basic cell 1, gate electrodes are oriented in a radial direction. Since the shape of the cell is symmetrical relative to top and bottom centerline 1.sub.2 and right and left center line 1.sub.1, it is possible to use the basic cell in the right and left symmetry and the top and bottom symmetry. This increases the degree of circuit design freedom and reduces unused region of the gates.
However, the basic cell described above has the following problems: relative to center point Q. Source regions S and drain regions D, which are partitioned by gate electrodes 3, are also individually oriented in the radial direction relative to center point Q. Therefore, in this basic cell, the tendency is to wire each electrode in the radial direction. As a result, although there is a high-level of freedom for external wiring for basic cell 1, there is a low-level of freedom for internal wiring of the transistors within basic cell 1.
Basic cell 1 has a basic cell structure that includes centrifugal characteristics. As shown in FIG. 14, as to wire connection areas 3a of gate electrodes 3, because a plurality of gate electrodes 3 converge on the center of well 2, it is difficult to put connections on the inner ends of gate electrodes 3. Therefore, they are placed only on the outer ends. As a result, in the case of internal cell wiring, detour wiring and long distance wiring between wiring connection areas 3a of the outer ends are unavoidable. Moreover, the mutual wiring between source region S and drain region D is difficult and the wiring within the cell is poor. the basic cell has wiring connection areas on both ends in the non-active regions, which facilitates wiring of the gate electrodes. However, as stated earlier, in basic cell 1 described above, because a plurality of gate electrodes 3 converge on the center of well 2, an inadequate amount of wiring connection area is available at the center. Thus, it is difficult to place wiring connections on the inner ends of gate electrodes 3. As a result, there is a low degree of freedom for wiring of the special gate electrodes.
For these reasons, a purpose of this invention is to resolve the problems stated above. The invention provides for a basic cell that has top and bottom symmetry and left and right symmetry. The basic cell structure is configured to allow a high-level of freedom for the internal wiring within the basic cell. The basic cell structure allows the gate electrodes to have a wiring connection area on both ends.


SUMMARY OF THE INVENTION

In this invention, the structure of the basic cell has a rotating symmetry. The basic cell has 4n (where n is a positive integer) MIS transistors. In addition, the wiring connection areas of the transistors have overlapping rotating symmetry relative to the same typ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1897986

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.