Semiconductor chip-based radiation detector

Radiant energy – Invisible radiation responsive nonelectric signalling – Optical change type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

10392397

ABSTRACT:
The present invention is a self-contained device for measuring exposure to radiation which includes an integrated circuit device incorporating a polymer dispersed liquid crystal component that resides on a semiconductor substrate.

REFERENCES:
patent: 4595292 (1986-06-01), Amodeo et al.
patent: 5124635 (1992-06-01), Henley
patent: 5359075 (1994-10-01), Ohyama et al.
patent: 5585035 (1996-12-01), Nerad et al.
patent: 5698343 (1997-12-01), Sutherland et al.
patent: 5867238 (1999-02-01), Miller et al.
patent: 5977955 (1999-11-01), Jaeger
patent: 6061107 (2000-05-01), Yang et al.
patent: 6396045 (2002-05-01), Ballingall et al.
patent: 6414294 (2002-07-01), Marshall et al.
patent: 6426503 (2002-07-01), Wuest
patent: 6538814 (2003-03-01), Hunter et al.
patent: 6665042 (2003-12-01), Marshall et al.
patent: 6671008 (2003-12-01), Li et al.
patent: 6677613 (2004-01-01), Yamazaki et al.
patent: 6815016 (2004-11-01), Kyu et al.
patent: 6888141 (2005-05-01), Carr
patent: WO 01/22505 (2001-03-01), None
P. Mormile, P. Musto, L. Petti, G. Ragosta, and P. Villano, Electro-optical properties of a PDLC based on unsaturated polyester resin, Appl. Phys. B, 2000, 249-252, 70, Italy.
S. A. Carter, J. D. Legrange, W. White, J Boo, and P. Wiltzius, Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process, Appl. Phys., 1997, 5992, 81(9), Murray Hill, NJ.
D. Cupelli, M. Macchione, F.P. Nicoletta, G. De Filpo, and G. Chidichimo, Electrically induced changes in polymer dispersed liquid crystals, Appl. Phys. Lett., 1998, 2856-2858, 76(20), Italy.
J.L. West, J.R. Kelly, K. Jewell, and Y. Li, Effect of polymer matrix glass transition temperature on polymer dispersed liquid crystal electro-optics, Appl. Phys. Lett, 1992, 3238-3240, 60(26), Kent, Ohio.
Karl Amundson, Alfons Van Blaaderen, and Pierre Wirtzius, Morphology and electro-optic properties of polymer-dispersed liquid-crystal films, Phys. Rev. E, 1997, 1646, (55)2, Murray Hill, NJ.
R. Barotlino, N. Scaramuzza, D.E. Lucchetta, E. S. Bama, A. Th. Ionescu, and L. M. Blinov, Polarity sensitive electro optical response in a nematic liquid crystal-polymer mixture, J. Appl. Phys, 1999, 2870, 85(5), Italy.
P. Mormile, L. Petti, M. Abbate, P. Musto, G. Ragosta, and P. Villano, Temperature switch and thermally induced optical bistability in a PDLC, Optics Communications, 1998, 269, 147, Italy.
S.C. Sharma, L. Zhang, A.J. Tapiawala, and P.C. Jain, Evidence for Droplet Reorientation and Interfacial Charges in a Polymer-Dispersed Liquid-Cell, Phys. Rev. Lett, 2001, 105501-1, 87(10), Arlington, TX.
H. K Jeong, Hirotsugu Kikuchi and Tisato Kajiyama, Kinetic Control of the phase-separated structure and electro-optical switching properties of (polymer/liquid crystal) composite films prepared by a solvent case method, New Polymeric Materials, 1998, 103-117, 5(2), Japan.
S.C. Jain and D. K. Rout, Electro-optic response of polymer dispersed liquid-crystal films, J. Appl. Phys., 1991, 6988-6992, 70(11), India.
Si-Xue Cheng, Ru-Ke Bai, Ying-Fang Zou, Cai-Yuan Pan, Electro-optical properties of polymer dispersed liquid crystal materials, J. Appl. Phys. 1996, 80(4), People's Republic of China.
B.G. Wu, J.L. West, and J.W. Doane, Angular discrimination of light transmission through polymer-dispersed liquid-crystal films, J. Appl. Phys., 1987, 3925, 62, Kent, Ohio.
P.S. Drzaic and A.M. Gonzales, Refractive index gradients and light scattering in polymer-dispersed liquid crystal films, Appl. Phys. Lett., 1993, 1332, 62, Menlo Park, CA.
Kwansum Park, Hirotsugu Kikuchi, Tisato Kajiyama, Component Dependence of Aggregation Structure and Light Scattering Properties of Polymer/Liquid Crystal Composite Films, Polymer Journal, 1994, vol. 26, No. 8, 895-904, Japan.
Paul S. Drzaic, Reorientation dynamics of polymer dispersed nematic liquid crystal films, Liquid Crystals, 1988, vol. 3, No. 11, 1543-1559, Sunnyvale, CA.
S.C. Jain, D.K. Rout and S. Chandra, Electro-Optic Studies on Polymer Dispersed Liquid Crystal Films Prepared by Solvent-Induced Phase Separation Technique, Mol. Cryst. Liq. Cryst., 1990, vol. 188, 251-259, India.
Hwan-Kyeong Jeong, Hirotsugu Kikuchi, Tisato Kajiyama, Low Voltage Switching of Hybrid-Type Cell Composed of (Polymer/Liquid Crystal) Composite System, Polymer Journal, 1997, 165-170, vol. 29, No. 2, Japan.
L. Petti, P. Mormile, W.J. Blau, Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals, Optics and Lasers in Engineering, 39, 2003, 369, 377, Ireland.
Tisato Kajiyama, Osamu Yonekura, Jun-Ichiro Nishiwaki and Hirotsugu Kikuchi, Interfacial Interaction of Polymer/Liquid Crystal Molecules and Electrooptical Properties of Their Composite Systems, J.M.S. Pure Appl. Chem., A31(11), pp. 1847-1865 (1994), Hong Kong.
N.N. Peschanskaya, A.S. Smolyanskii, and V. Yu. Surovova, Deformation of polymethylmethacrylate after exposure to60CO Rays, Physics of the Solid State, vol. 35, No. 9, Sep. 1993, Russia.
Hirotsugu Kikuchi, Jun-Ichiro Nishiwaki and Tisato Kajiyama, Mechanism of Electro-Optical Switching Hysteresis for (Polymer/Liquid Crystal Composite Films, Polymer Journal, vol. 27, No. 12, 1246-1256, 1995, Japan.
Jin-Baek Kim, Myong-Goo Lee, Jae-Hak Choi, Effect of the ionic conductivity of a polymer matrix on the electrooptical properties of polymer-dispersed liquid crystal films, Polymer Bulletin 41, 37-43, 1998, Korea.
Jin-Baek Kim, Myong-Goo Lee, Jae-Hak Choi, Polymer-dispersed liquid crystal films using poly (2-methyloxycarbonyl-bicyclo[2.2.1] hepta-2,5-diene-co-poly(ethylene glycol) methacrylate) as a matrix resin, Polymer Bulletin, 41, 701-705, 1998, Korea.
Toru Fujisawa, Masanao Hayasi, Hidetoshi Nakada, Yuitiro Tani and Masao Aizawa, An Analysis of Photo-Polymerization Induced Phase Separation Process in Liquid Crystal/Polymer Composite Films, Mol. Cryst. and Liq,. Cryst. 2001, vol. 366, pp. 107, Japan.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor chip-based radiation detector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor chip-based radiation detector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor chip-based radiation detector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3751529

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.