Semiconductor antifuse with heating element

Active solid-state devices (e.g. – transistors – solid-state diode – Integrated circuit structure with electrically isolated... – Passive components in ics

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06750530

ABSTRACT:

BACKGROUND OF INVENTION
The present invention relates to user-programmable antifuse devices; more specifically, it relates to combinations of antifuse devices and antifuse heater elements and the method of programming antifuse devices having antifuse heater elements.
An antifuse is a programming device that is essentially an open circuit before programming and a closed circuit after programming. One type of antifuse is a capacitive antifuse. A capacitive antifuse is a structure composed of an insulator with a conductive plate on opposite sides of the insulator. The antifuse is programmed by applying a voltage across the two plates sufficient to break down the insulator between the plates, thus shorting the plates together.
Generally, very high voltages are required to program an antifuse. This presents two problems in applying antifuse technology to advanced semiconductor chips. First, the programming voltage may be so much higher than devices of a semiconductor chip are designed to withstand that damage to the devices results when the antifuses are programmed. Second, in certain applications, the high programming voltage may not be available on the semiconductor chip. The conventional method of overcoming these two problems has been to try to use a lower than ideal voltage for a shorter time. However, this approach results in increased process time and costs as well as decreased reliability in terms of the programmed antifuse staying programmed, i.e. staying shorted and not opening up over the life of the chip, thus causing chip failure in the field.
SUMMARY OF INVENTION
A first aspect of the present invention is a programmable device comprising: an antifuse; a resistive heating element having a substantially linear temperature to power response, the resistive heating element adjacent to but not in contact with the antifuse; and means for passing an electric current through the resistive heating element in order to generate heat to raise the temperature of the antifuse sufficiently high enough to decrease a programming voltage of the antifuse, a time the programming voltage is applied to the antifuse or both the programming voltage of the antifuse and the time the programming voltage is applied to the antifuse.
A second aspect of the present invention is a method of programming an antifuse comprising: providing an antifuse; providing a resistive heating element having a substantially temperature to power response, the resistive heating element adjacent to but not in contact with the antifuse; passing an electric current through the resistive heating element in order to generate heat to raise the temperature of the antifuse sufficiently high enough to decrease a programming voltage of the antifuse, a time the programming voltage is applied to the antifuse or both the programming voltage of the antifuse and the time the programming voltage is applied to the antifuse; and passing the programming voltage through the antifuse to form an electrically conductive path through the antifuse.


REFERENCES:
patent: 6288437 (2001-09-01), Forbes et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor antifuse with heating element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor antifuse with heating element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor antifuse with heating element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3317731

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.