Semi-frozen food product carbonator

Gas and liquid contact apparatus – Contact devices – Liquid tank

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C261S123000, C261SDIG007, C099S323100

Reexamination Certificate

active

06830239

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to semi-frozen food product producing machines, including frozen carbonated beverage (FCB) machines, and in particular to the beverage blending and carbonating systems thereof.
BACKGROUND
FCB making and dispensing machines are known in the art and generally utilize a freezing cylinder for producing a slush beverage therein. An evaporator coil is wrapped around the exterior of the cylinder for cooling the contents thereof. A scraper mechanism extends along the central axis of the cylinder and is rotated to scrape thin iced or frozen layers of the beverage or food product from the internal surface of the cylinder. A carbonator tank is used to produce carbonated water by the combination therein of water and pressurized carbon dioxide gas (CO
2
). The carbonated water and a syrup are then combined in the desired ratio and introduced into a separate blender bottle. The properly ratioed beverage is then delivered from the blender bottle into the freeze cylinder.
In the above stated U.S. patent application Ser. No. 09/079,063, a “blendonator” is shown comprising an improved carbonator in which the water, carbon dioxide gas and syrup are all simultaneously mixed, thereby eliminating the need for a separate carbonator vessel for first producing the carbonated water. While this approach has provided for a significant improvement in the quality of frozen carbonated drinks while at the same time reducing the cost of the overall machine, further improvements therein are achievable. In particular, there is a need during times of high utilization, where large numbers of drinks are being drawn in a relatively short time period, to provide for a consistently and highly carbonated product.
SUMMARY OF THE INVENTION
In a preferred embodiment of the present invention, a dual purpose carbonator/blending bottle, “blendonator”, is connected to a source of beverage syrup, a source of potable water and to a source of pressurized carbon dioxide gas. A pair of ratio valves provide for metering the water and syrup, which combined beverage then flow into a serpentine heat exchange coil and then into the blending bottle. Both the blending/carbonating bottle and heat exchange coil are retained within an ice bank cooled water bath tank. A refrigeration system provides for cooling an evaporator located in the water tank for forming the ice bank thereon. The blending bottle includes an outlet for connecting to the interior volume of a freeze cylinder. The freeze cylinder also includes a further evaporator coiled around an exterior perimeter thereof. The freeze cylinder evaporator is connected to and cooled by the same refrigeration system that cools the evaporator in the water bath tank. A scraping mechanism within the cylinder provides for scraping frozen beverage from the inner surface of the cylinder. A control mechanism provides for controlling the refrigeration system and the cooling of both evaporators.
The blendonator comprises a cylinder having a closed bottom end and a removable top end disk. The disk includes a non-carbonated beverage inlet for connecting to the serpentine coil into which the water and syrup have previously been introduced at a desired ratio. There is also an inlet for attachment to a pressurized source of carbon dioxide gas. An outlet provides for fluid connection of the blendonator tank to the freeze cylinder for delivery therein of the carbonated beverage. In the preferred form, the beverage inlet is combined with a level sensor, which sensor, as is known in the art, provides a signal for controlling the pumping of the noncarbonated water/syrup mixture into the cylinder.
The improved blendonator herein also includes a circular baffle plate located therein and positioned above the bottom end. The baffle include a plurality of primary beverage holes there through and one large secondary beverage flow hole. Internally of the blendonator, the outlet has a tube connected thereto and extending therefrom below the level of the baffle and terminating closely adjacent the blendonator bottom end. The baffle includes a further large orifice for receiving there through the internal outlet tube. Within the blendonator, the carbon dioxide gas inlet includes a tube secured thereto terminating in a closed porous plastic end plug or diffuser positioned above the level of the baffle.
In operation, the cooled noncarbonated syrup/water mixture is introduced into the blendonator when the level indicator signals that the level of beverage therein requires replenishing. CO
2
gas is provided to the internal volume of the cylinder at a predetermined pressure. The CO2 gas flows into the porous diffuser and passes there through into the surrounding water/syrup mixture as finely divided bubbles. This action of introducing the CO2 gas as very fine small bubbles has the effect of providing for more rapid carbonating of the water/syrup mixture at a particular desired level.
It is thought that within the blendonator there exists a natural gradation in the beverage wherein the carbonation level thereof increases in a direction towards the blendonator bottom end. The baffle was found to accentuate this division and provide ostensibly for a separation between a lesser carbonated mixture that exists above the level thereof and a finished or fully carbonated mixture there below. By positioning the porous plug or diffuser at a level above the baffle, the desirable effect of directing carbonation preferentially to the lesser carbonated fraction is achieved. The primary holes in the baffle plate permit flow there through during normal draw conditions. The large secondary hole permits a greater flow there through and prevents “starving” at the outlet tube during a period of exceptionally high demand. It can be understood that the outlet tube will draw preferentially from what is essentially only the fully carbonated mixture portion. It is thought that the baffle plate creates within the blendonator a less “chaotic” environment, particularly when new water/syrup mixture is being introduced, wherein carbonation can proceed in a less random manner. Thus, the carbonation process is more efficient and effective by carbonating the fraction of beverage that most requires it. Those of skill will understand that the ability of the blendonator of the present invention to carbonate at an increased rate and efficiency is contributed to maximally by the combination of both the porous diffuser and the baffle plate in addition to the pre-cooling of the water/syrup mixture and that the blendonator itself is retained within a water cooled bath.
As stated above, the blendonator herein combines the functions of the separate carbonator and blending bottle system found in the prior art. Thus, the present improved blendonator serves both to carbonate the beverage and to retain a volume of a finished amount thereof. As it is located in the water bath tank, the volume of beverage therein is cooled by heat exchange transfer with the ice formed on the ice bank evaporator. A further volume of the beverage is retained in the serpentine coil and also maintained at a suitably cool temperature by heat exchange contact with the cooled water of the water bath. The beverage is therefore pre-cooled to a temperature just above its freezing point before delivery to the freeze cylinder. Thus, far less cooling power is needed to reduce the beverage to a frozen state, as would be the case in prior art FCB machines where the beverage is typically at a much higher ambient temperature just prior to its introduction into the freeze cylinder. Those of skill will understand that the ice bank provides for this extra cooling, which ice bank is formed by operation of the refrigeration system to build ice on the water bath evaporator. In the present invention, this added cooling is attained with a similar or even smaller sized refrigeration system components than would be used in comparable output prior art FCB machines. This enhanced cooling ability is obtained by the strategy of building an ice bank on the water ba

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semi-frozen food product carbonator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semi-frozen food product carbonator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semi-frozen food product carbonator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3333380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.