Semi-displacement hull

Ships – Displacement-type hull – Having specific forebody

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C114S061290, C114S061300, C114S271000

Reexamination Certificate

active

06668743

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to hulls for watercraft which operate in a very high and ultra high speed range where hull resistance and propulsion requirements are of primary importance and in particular to a hull form embodying a specific planing, semi-displacement configuration which reduces resistance and power requirements at these high operating speeds. More specifically, the invention relates to a vessel having a hull form, that is, a shape, a cross-section, or a contour, that both displaces the water and that causes a force to be generated to raise the vessel out of the water.
BACKGROUND OF THE INVENTION
Very high speed watercraft operate in two separate categories of hull resistance dynamics. Both categories involve potential theory concepts which relate energy input, from propulsion, to energy output from hydrodynamic pressures which create wave and pressure loads against the hull. Pressure loads create lateral wave profiles which act against the forward hull sections, which are lateral area profiles, to impede the forward motion of the hull. Pressure loads created by forward motion against the bottom surface of the hull sections act to lift the hull out of the water causing it to “plane” and thus decrease the impedance on forward motion of the hull created by the lateral wave profiles. A fully planing craft will ride completely on its bottom surface over the water surface so that the craft is lifted nearly completely out of the water and no longer behaves as an Archimedean (floating) body. In the modern design of very high speed vessels, the fully planing hull is not a realistic approach for the transport of cargo. Consequently, high speed craft involved in commercial enterprise typically operate in a speed range where wave making forces exert an important influence on hull design.
A truly viable commercial vessel operating at ultra-high speeds would be designed to take advantage of both minimal wave making and dynamic planing “lift” to decrease hull movement resistance and reduce the powering requirements of the vessel. Heretofore, wave making reduction in hull design has concentrated upon developing secondary wave systems which cancel out or reduce high bow waves or reducing wave making at specific areas of the hull rather than along the entire length of the hull. For example, increasing the stern closing wave height has not been addressed as a technique to decrease forward motion resistance. Bow appendages such as the “bulbous bow” projection have been successfully applied for full displacement, non-planing craft. These appendages are always extensions of the stem and keel, projecting ahead of the bow stem. Using bow projections as an appendage to planing craft has not proven effective since a planing craft by its nature “lifts” the hull out of the water so that the previously submerged bulbous bow projections during planing are partially out of the water and thus fail to function.
Wave drag reduction for hulls which operate at speeds where wave making and planing characteristics are combined has generally been frustrated by the complexity of the relationship between the two characteristics. Conventional approaches optimize one feature or the other, generally using horsepower to overcome the initial wave making hump at the fast speed range, where TQ=2.0, below optimal planing speeds. An approach which considers the entire immersed hull, the arrangement of immersed sectional areas over the length of the hull and the portion of the hull which can be optimized for a planing surface in conjunction with reduced wave drag has not been presented. Planing craft designed for ultra-high speed operations are typically designed to optimize the net area of the planing surface which develops the requisite “lift.” As a consequence, the forward stations of a pure planing craft are full and are not designed to minimize wave making. The stern stations are as flat as possible since any wave closing augmentation is negligible as the hull is now riding nearly on the water surface due to dynamic planing “lift”.
Ultra-high speed craft engaged in cargo operations, where the size of the payloads is important, must operate in displacement and immersion levels where hull configuration and wave making continue to affect performance. This relates directly to the inherently immersed configuration of the hull form where wave drag characteristics are not removed or diminished by dynamic lift (or emergence) of the hull. The hull wave drag, given the design horsepower, must not be so great as to impede the ability of the hull to reach planing speed. At high speeds where TQ=2.0, conventional hulls exhibit an increase in wave making and create a resistance “hump” which stands in the way of a typically uniform increase in the power verses speed curve. This jump in resistance can only be overcome by applying more power to the vessel, very often more power than the vessel requires for its design speed once planing speed has been achieved and the wave making “hump” has been passed.
Thus, it is desirable to provide a semi-displacement hull which reduces wave making drag and it is to this end that the present invention is directed.
SUMMARY OF THE INVENTION
A hull form which operates in the speed ranges where both planing and wave making affect hull resistance is presented with a configuration which reduces wave drag and improves performance in very fast and ultra-fast speed ranges. The hull form is constructed so that there are variations in the distribution of immersed cross-sectional area that affect wave making resistance. The specific distribution of immersed cross-sectional area minimizes bow wave making and optimizes the closing wake. The bow wave impedes forward motion of a hull form. The stern closing wake pushes the hull forward and enhances the forward motion. The bow sections are designed so that they have a “hollow” entrance configuration which decreases the effort to spread the water and in turn diminishes the wave making as the hull pushes through the water. The stem sections are designed to be of such a configuration that as the water spread by the bow now must close in around the stem of the hull, the wave height is increased so that the closing wake exerts a forward thrust on the hull. The stern wave caused by hull shape, is augmented or made higher, so that the bow sections reduce the wake height and the stern sections increase the wake height. The keel line at the bow has a slight upwards slope to allow for thinner bow sections and create hollow waterlines forward. The aft keel line has a long slope up and aft to allow for fuller and more nearly rectangular stem sections and create convex waterlines which form a slightly rounded side in the after body. Curving the afterbody section in towards the hull centerline increases the advantage of the closing thrust created by the stem wake. The sections aft of midships are all designed as low deadrise, hard chine sections where the dynamic lift surface for planing is optimized.
The semi-displacement hull in accordance with the invention significantly reduces the wave making drag of the hull at the high speed range (TQ=2.0) of vessel operation thereby allowing the vessel to reach ultra-high speeds where planing characteristics dominate hull behavior. The semi-displacement hull also includes an aft body that is developed for planing. The semi-displacement hull also may include derivative hull configurations, from a set of formulas, where hull coefficients may be varied. The invention also provides a multi-hulled high speed or ultra-high speed vessel using the semi-displacement hull.
The invention is a vessel intended for high and ultra-high speed operation and use in a semi-displacement mode where wave making and planing characteristics are present. The vessel has a semi-displacement hull with a semi-displacement forebody and an afterbody developed for planing. The hull form
1
is characterized by an immersed sectional area distribution and immersed sectional area providing a volume with concave su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semi-displacement hull does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semi-displacement hull, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semi-displacement hull will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3180326

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.