Semi-automatic wire processing apparatus

Tools – Wire stripper – Bench tools

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S825000

Reexamination Certificate

active

06176155

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to so-called wire processing apparatus wherein a coated, filamentary member, such as an electrical wire or optical fiber, is clamped in a fixed position while blade means sever the coating layer(s) and strip the severed slug(s) from the member. In a preferred form, the apparatus of the invention is operable to successively sever and strip a plurality of coating layers from the filamentary member. Although it will be understood that the present invention, and related prior art equipment, may be used with many types of filamentary workpieces, for simplicity of discussion the workpiece will be considered an electrical cable having a central core and a plurality of coating or covering layers of electrical insulation, magnetic shielding, and the like, i.e., such as a coaxial cable, and will be referred to as a “wire” throughout the following written description.
A wide variety of equipment has been devised for the purpose of severing and stripping coating layers from coaxial cables, and other wires with a plurality of coating layers. Such equipment may be constructed for entirely manual operation, fully automated operation, or some combination of the two. Examples of fully automated cutting/stripping machines may be found in U.S. Pat. Nos. 5,111,720, 5,243,882, and others, wherein values representing a plurality of lengths (from the end of the cable to the longitudinal position of the cut) and radial depths of successive cuts, each through a different covering layer, may be entered via a keypad and stored in electronic memory. Upon actuation, the equipment proceeds automatically to make successive cuts through the covering layers at the lengths and depths stored in memory.
It is a principal object of the present invention to provide apparatus for successively cutting through a plurality of layers of a coaxial cable at different lengths and depths with some settings entered by an operator and stored in a purely mechanical manner with other settings entered and stored electronically. That is, the principal object of the invention is to provide novel and improved hybrid or semi-automatic apparatus for cutting through a plurality of covering layers at various lengths and depths of cuts.
Another object is to provide apparatus for gripping a wire with a substantially constant force over a range of wire diameters as cutting and stripping of covering layers is performed.
A further object is to provide wire processing apparatus with means for storing two sets of values relating to lengths of cuts and/or other variables and for performing functions commensurate with each set of values alternately on two different wire ends.
Still another object is to provide novel and improved means for mechanically storing a plurality of radial depths of cuts to be made in covering layers of a coaxial cable and for implementing successive cuts at the mechanically stored depths.
Other objects will in part be obvious and will in part appear hereinafter.
SUMMARY OF THE INVENTION
The wire processing apparatus of the invention includes a pair of reciprocating gripping jaws which are initially separated for axial insertion therebetween of a coaxial cable, or the like. After the apparatus has been initialized, as described later, the cable is inserted until its terminal end contacts blade means which subsequently effect the cutting operation. The jaws are then pivoted toward a closed position by operation of a linear actuator to move a wedge to rotate the jaws until they grip the cable. The actuator is programmed to move the wedge, and thereby move the jaws, by a distance commensurate with the diameter of the wire being clamped. That is, the distance of movement of the actuator is variable in accordance with the wire diameter to ensure that the gripping force is sufficient to prevent movement of the cable as axial forces are exerted thereon while avoiding excessive gripping forces.
The apparatus includes a pair of blades having cutting edges movable toward and away from one another to effect cutting through the covering layers on the cable. The blades are initially in a closed position, i.e., the cutting edges of the blades are substantially in mutual contact, and serve as a stop means for contact by the end of the cable to establish the limit of axial insertion thereof. Arms carrying the blades are then pivoted to rotate the blades to an open position, i.e., to separate the cutting edges, and the cutting mechanism, including the blades, is moved axially of the cable to position the blades adjacent the axial portion of the cable where the first cut is to be made. The distance of axial movement of the blades, i.e., the “length of cut,” is controlled by a stepper motor acting on a lead screw to move a carriage upon which the cutting means are mounted. Electrical signals provided to the stepper motor for establishing the lengths of each of a plurality of successive cuts are controlled by an electronic memory which stores values entered by an operator via a keypad on the apparatus, in conventional manner.
The depth of a cut, i.e., the distance of radial movement of the blades toward the axis of the cable, is determined by the axial position of a stop member which physically contacts and axially moves a conical cam member to effect radial movement of the blades. A rotatable turret is fitted with a plurality of threaded shafts and a fixed shaft. All of the shafts have axes parallel to the axis of rotation of the turret and are spaced equally therefrom. The threaded shafts are engaged in respective nuts which are manually rotatable for reciprocal, axial movement of the shafts, thereby providing individual, selective positioning of the terminal end of each shaft. The turret is indexed by a linear actuator between four rotational positions. The terminal end of a different one of the four shafts (three selectively, axially movable, one fixed) is positioned in alignment with the member which effects radial movement of the blades in each of the four turret positions. The turret is mounted on a carriage which is movable in a direction parallel to the axes of the shafts. The carriage moves a fixed distance, between predetermined rear and forward positions, upon each actuation. Thus, the extent of radial movement of the blades (depth of cut) is controlled by the position of the end of the shaft in alignment with the cam member. The turret is rotatably indexed after each cut is completed to position the end of a different shaft in alignment with the cam member, the fixed shaft always being in this position, with the carriage in its forward position, at the beginning of each cycle to establish the initialized (fully closed) position of the blades. The nuts which adjust the axial positions of the threaded shafts to establish the desired depths of cuts are manually accessible through an opening in the top of the apparatus housing.
A unique keypad is provided for entry by an operator of values and control functions. Among other features, the keypad permits entry of a first plurality of cutting and/or strip lengths for sequentially severing and fully or partially removing a plurality of coating layers on one end of a wire, and a second plurality of values for sequential cutting/stripping operations on the other end of the wire. Of course, the wire is removed from the clamping means, reversed end-for-end and replaced in the clamping means between the first and second sequence of operations.
The foregoing and other features of construction and operation of the invention will be more readily understood and fully appreciated from the following detailed disclosure, taken in conjunction with the following detailed description and accompanying drawings.


REFERENCES:
patent: 1666277 (1928-04-01), White
patent: 2645959 (1953-07-01), Fuchs et al.
patent: 2671363 (1954-03-01), Wells
patent: 2880635 (1959-04-01), Harris
patent: 3176550 (1965-04-01), Marcotte
patent: 3222957 (1965-12-01), Kramer et al.
patent: 3376627 (1968-04-01), Sitz
patent: 3838612 (1974-10-01), Inami
patent: 3881374

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semi-automatic wire processing apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semi-automatic wire processing apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semi-automatic wire processing apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.