Self-watering and fertilizing pot for plants

Plant husbandry – Receptacle for growing medium – Irrigator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06691460

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
This invention relates, generally, to means for watering and fertilizing potted plants or flowers in vases. More particularly, it relates to means for watering and fertilizing means that conserves water.
2. Description of the Prior Art
Some plants require daily watering and cannot be left unattended for more than a few days. Other plants require drying out between watering. Their roots are heavily soaked, allowed to dry over a period of a week or so, and then heavily watered again.
These plants may be left unattended for a little more than a week, but not much more.
Plants also require fertilizer, but usually on a less frequent basis than water.
Numerous self-watering pots have been developed to enable plant caretakers to take vacations or to avoid daily and weekly watering of plants for other reasons. Typically, these methods include a remote reservoir of water in fluid communication with one of more pots.
In some designs, wicks are employed to draw water from an external reservoir into the soil within which a plant is rooted.
One of the drawbacks of the known systems is that no means are provided to regulate water flow to individual plants. Thus, all plants in the network receive about the same amount of water over a given period of time. Thus, too much water is provided to some plants and too little to others. As a result, water is wasted through excessive evaporation or by draining from the bottom of a pot containing an over-watered plant. Some plants are killed from over-watering and some die from under-watering.
However, in view of the prior art considered as a whole at the time the present invention was made, it was not obvious to those of ordinary skill in the pertinent art how the drawbacks of the known plant-watering systems could be overcome.
SUMMARY OF INVENTION
The long-standing but heretofore unfulfilled need for a self-watering pot for plants is now met by a new, useful, and nonobvious invention.
In a first embodiment, the novel structure includes a double-walled container having a bottom wall, an exterior wall extending upwardly from a peripheral edge of the bottom wall, and an interior wall extending upwardly from the bottom wall in concentric relation to the exterior wall.
A liquid fluid-holding reservoir is defined by the bottom wall, the exterior wall, and the interior wall.
A top wall of annular or other predetermined configuration interconnects the exterior wall and the interior wall at their respective uppermost rims. A fill opening is formed in the top wall to enable introduction of liquid fluid into the liquid fluid-holding reservoir.
A soil or liquid fluid-holding space is defined by the interior wall and the bottom wall. A first opening is formed in the exterior wall and a second opening is formed in the interior wall in alignment therewith.
A flow control valve means extends through the first and second openings. The flow control valve means includes a control knob mounted to the proximal end of an elongate tapered stem. The control knob is external to the pot and the elongate tapered stem is immersed in the liquid fluid-holding reservoir.
The elongate tapered stem has a distal end adapted to extend into the soil. The stem is disposed through the first and second openings so that full rotation of the control knob in a first direction seals the first and second openings and so that rotation of the control knob in a second direction opposite to the first direction maintains the first opening in a sealed condition but opens the second opening so that water in the liquid fluid-holding reservoir flows into the soil or liquid-fluid folding space.
In this way, the control valve can be set so that liquid fluid gradually seeps into the soil or the liquid fluid-holding space at a preselected rate. Accordingly, a plant rooted in the soil receives water from the liquid fluid-holding reservoir for an extended period of time so that a human need not water the plant on a daily of weekly basis and so that water is concerved.
In a second embodiment, a false bottom wall is positioned in parallel relation to the true bottom wall, upwardly thereof to create a second liquid fluid-holding reservoir between the false bottom wall and the true bottom wall so that the soil that is in the soil or liquid fluid-holding space is supported by the false bottom wall.
In this second embodiment, at least one opening is formed in the interior wall above a plane defined by the true bottom wall and below a plane defined by the false bottom wall so that liquid fluid in the liquid fluid-holding reservoir flows into a second liquid fluid-holding reservoir defined by the true bottom wall, the false bottom wall, and a lower part of the interior wall having said at least one opening formed therein.
In additional embodiments, vases are provided for holding flowers and containers are provided for holding water for feeding animals. No soil is contained in such additional embodiments.
In another embodiment, a plurality of self-watering, self-fertilizing pots are connected to a manifold that is connected to a holding tank. Timers on the manifold control the delivery of water to the respective reservoirs of each potted plant. A flow control valve is provided on each pot in the network of pots so that a user controls the individual requirements of each plant as in the earlier embodiments.
Another embodiment includes an apparatus that is retrofit into a pot for plants, so that the pot becomes a self-watering pot. It is provided in the form of a single-walled container or flask having a bottom wall, a side wall mounted about and extending upwardly from a peripheral edge of the bottom wall, and a top wall. A liquid fluid-holding reservoir is defined by the bottom wall, the side wall, and the top wall. A fill opening is formed in the top wall so that liquid fluid may be introduced into the liquid fluid-holding reservoir.
The single-walled container has a narrow structure to facilitate its insertion into soil contained within a conventional single-walled pot for plants. A flow control valve means has an elongate tapered stem that extends through the container.
The elongate tapered stem has a distal end adapted to extend into the soil. The flow control valve means has a control knob positioned on an external surface of the single-walled container. Full rotation of the control knob in a first direction is adapted to prevent flow of water from the liquid fluid-holding reservoir into the soil and rotation of the control knob in a second direction opposite to the first direction is adapted to enable liquid fluid in the reservoir to flow into the soil. In this way, the flow rate of liquid fluid into the soil is controllable by the flow control valve means.
The control knob is mounted on the external surface of the container at the top wall thereof and a linkage means interconnects the control knob to the tapered stem. The linkage means includes an elongate control shaft that rotates conjointly with the control knob, a first gear means mounted to a distal end of the elongate control shaft that rotates conjointly with the control shaft, and a second gear means mounted on the elongate tapered stem that is driven by the first gear means so that rotation of the control knob in a first direction effects simultaneous rotation of the elongate tapered shaft in a first direction and so that rotation of the control knob in a second direction effects simultaneous rotation of the elongate tapered shaft in a second direction opposite to the first direction. Rotation of the control knob in the first direction therefore reduces a flow rate of liquid fluid into the soil and rotation of the control knob in the second direction increases the flow rate.
A seeping chamber may be secured to the container on a sidewall thereof that abuts the soil when the container is positioned within the pot. The seeping chamber has at least one weep opening formed therein. The seeping chamber is adapted to house the distal end of the elongate tapered stem so that liquid fluid flowing from the liq

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self-watering and fertilizing pot for plants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self-watering and fertilizing pot for plants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-watering and fertilizing pot for plants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3301044

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.