Conveyors – chutes – skids – guides – and ways – Chutes – Mail
Reexamination Certificate
2003-04-16
2004-11-09
Ellis, Christopher P. (Department: 3651)
Conveyors, chutes, skids, guides, and ways
Chutes
C198S538000, C209S900000
Reexamination Certificate
active
06814210
ABSTRACT:
BACKGROUND
1. Field
Although not so limited in its utility or scope, implementations of the present invention are particularly well suited for incorporation in material sortation systems such as those used in moving mail pieces through various stages of processing in a mail processing facility, for example.
2. Brief Description of an Illustrative Environment and Related Art
Material handling operations frequently involve the use of transport systems including networks of conveyor belts, roller conveyors, conduits and chutes. In a typical material sorting environment, a material receptacle is located at each terminus of a selected plurality of termini for the collection of material exiting the sortation system. Commonly, a discharge chute corresponds to a terminus and includes a surface sloped downwardly toward the receptacle for guiding material exiting the sortation system into the receptacle situated below the chute. Illustrative, commonly used, material receptacles include flexible receptacles such as sacks and bags, for example, and rigid receptacles such as boxes, crates, cartons, and carts, for instance.
In a typical package or mail sortation system, multiple, adjacent discharge chutes are arranged along a base structure such as a longitudinally extending main framework adapted for supporting plural chutes. Each chute, and the receptacle corresponding thereto, is typically dedicated to guiding and retaining mail pieces destined for a particular geographical region. Depending on the level of sortation refinement to which a set of chutes and receptacles is dedicated, each chute within the set may be dedicated to mail pieces destined for a particular region of the country, a particular state, a region of a state identifiable by the first three or four digits of a ZIP Code or destination city, for example. A reality of mail sortation systems is that a small percentage of mail pieces exits the sortation apparatus prematurely (i.e., without settling in appropriate receptacles). Of the mail pieces that are unintentionally expelled from the sortation apparatus, a considerable percentage travel as far as the discharge chute and simply miss the receptacle and come to rest on the work area floor, thereby contributing to the “miss sort error” rate of the overall sortation system. For various reasons, sortation protocol in certain sorting facilities requires the reintroduction into the system of unintentionally expelled mail pieces. Consequently, unintentionally expelled mail pieces handled in accordance with the aforementioned protocol must be “double handled” by at least a portion of the mail sorting apparatus. As will be readily appreciated, since a given set of mail sortation apparatus can handle only a finite number of mail pieces per unit time, the “double handling” of mail pieces by any portion of the mail sorting apparatus decreases the efficiency of the overall sortation system.
In response to miss-sort errors in the vicinity of receptacles, sortation facility personnel have resorted to various improvised measures. For instance, it is not uncommon for sortation personnel to raise the front of a receptacle (i.e., the opening edge of the receptacle opposite the exit end of the discharge chute) with the intention of creating a “back stop” for mail pieces that might otherwise overshoot the receptacle. Such measures succeed to a limited extent, but nonetheless require the ad hoc intervention of personnel and, moreover, do not succeed to the same extent that a more permanent solution would.
Accordingly, there exists a need for a collapsible, selectively deployable material deflection apparatus adapted for directing into a predetermined receptacle material (e.g., mail pieces) discharged from a discharge chute.
SUMMARY
In a typical embodiment, a deflector plate system includes a base frame adapted for one of permanent and removable dependence from the main framework supporting a material-guiding discharge chute. Reciprocably depending from the base frame is a deflector-plate support structure adapted for rearward and forward reciprocating motion with respect to the base frame along a reciprocation axis between a rearwardmost retracted position and a forwardmost extended position. Variations of a deflector-plate support structure include laterally spaced right and left, elongated frame members extending along, but not necessarily parallel to, the reciprocation axis or to one another. Pivotably attached to the right and left frame members are, respectively, right side and left side deflector plates. Each side deflector plate pivots about a side-plate pivot axis extending along, but not necessarily parallel to, the respective one of the right and left frame members from which that side deflector plate depends and along, but not necessarily parallel to, the reciprocation axis. Moreover, each side deflector plate includes an inner face, and outer face, a base edge, a distal edge opposite the base edge, and rear and front edges, the base edge being the edge, as between the base and distal edges, that is closer to the side-plate pivot axis.
In various embodiments, a front deflector plate pivotally depends from each of the right and left side plates. Each of the right and left front plates is pivotable about a front-plate pivot axis extending along the front edge of the side plate from which that front plate depends. Each front plate includes an inside face, an outside face, a base edge, a distal edge opposite the base edge, and upper and lower edges, the base edge being the edge, as between the base and distal edges, that is closer to the front-plate pivot axis.
In still additional embodiments, a rear or tail deflector plate pivotably depends from each of the right and left side plates. Each of the right and left tail plates is pivotable about a tail-plate pivot axis extending along the rear edge of the side plate from which that tail plate depends. Each tail plate includes an interior face, an exterior face, a base edge that extends along the tail-plate pivot axis, a top edge, and bottom edge and, depending on whether the tail plate includes more than three edges, a distal edge opposite the base edge. In an embodiment in which a tail plate includes only three edges, the tail plate is triangular with the top and bottom edges meeting at angle opposite the base edge of the tail plate. The reason for the inclusion of triangular tail plates in various embodiments will be more fully explained in the detailed description below.
In an illustrative environment, the base frame of the deflector plate system is either removably or permanently attached to a framework such that the base frame is disposed underneath the forwardly declining surface of a material-guiding chute. Typically, such a chute further includes material-guiding side walls depending upwardly from the forwardly declining surface and a material discharge (or drop-off) edge defining the terminus of the forwardly declining surface. The deflector plate system is selectively positionable into alternative storage and operative attitudes or states.
An illustrative storage attitude is one in which the deflector plates are collapsed and the deflector-plate support structure has been urged rearwardly toward its rearwardmost position with respect to the base frame. In the illustrative environment in which the base frame is disposed underneath the forwardly declining surface of a material-guiding chute, the deflector plates are sufficiently collapsible so as to assume a profile low enough to clear the material discharge edge of the chute as the deflector-plate support structure is urged toward its rearwardmost position. A storage attitude is, furthermore, typically one in which the deflector-plate support structure is sufficiently retracted that at least a majority portion of the length of each collapsed right and left side plate is disposed rearwardly of the chute discharge edge. In various embodiments, the side and front plates are planar and collapsible to such an extent that one of (i) at least a portion of the inside face of a front plate
Deuble Mark A.
Franco Louis J.
Hogan Patrick M.
Lockheed Martin Corporation
Schultz Leland D.
LandOfFree
Self-storing material sortation deflector system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Self-storing material sortation deflector system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-storing material sortation deflector system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3355729