Fluid handling – Inflatable article
Reexamination Certificate
1999-02-17
2001-02-27
Rivell, John (Department: 3753)
Fluid handling
Inflatable article
C137S848000, C446S224000
Reexamination Certificate
active
06192917
ABSTRACT:
BACKGROUND TO THE INVENTION
In the current market there is a wide variety of self-sealing valves and systems to implant them in the balloon body, especially the so-called metallic or non-metallic elastomers. All of them have a common characteristic as regards to long life in comparison with balloons made out of rubber or latex which are the most popular and most known among preceding generations.
All self-sealing valves that make up prior art have the same conformation pattern, as well as several similarities that are mentioned below:
All valves that make up the previous technology consist of a channel defined by two thermoplastic sheets or films which are compatible with each other and the material that makes up the inner wall of the balloon into which said valves are incorporated. All of these valves in their rectangular presentation are a completely finished product before their incorporation into the balloon wall. Thus it could be said that these prior art valves are alien to the balloon body since their implementation, not only in a balloon, but in any product configured by thermoplastic films, such as bags and packaging likewise being independent of the configuration and size of the article, with the only requirement being that the materials used in the manufacture of these products be compatible with the material with which such valves are made.
Another similarity common to prior art valves is that theses valves always have an inlet and outlet valve in their configuration to be implanted in the balloon body and a channel along the length of the valve body, said channel being bounded by lateral and parallel seals along the entire length of the valve body or almost its entire length, thus creating accurate passage or channel seals through which the liquid may flow to fill the balloon.
Both the configuration of the seal lines and channel may in some cases be curved, not straight and the width may vary throughout the length of the channel.
The kind of valves that we are concerned with, always related to those considered as being prior art, have an additional common characteristic, a small area printed with special heat-resistant ink which prevents heat sealing in this area of the valve once it is subject to implanting in the corresponding balloon and it adheres to the balloon body with the application of heat, thereby defining the Inflating fluid access passage, thanks to the print with the special above mentioned ink in the area bounded by said ink. Done otherwise, when implanting said valve and sealing it to the walls of the balloon neck, there would be no access passage for the inflating element and once said valve is implanted would only be obtained through the perforation or cut made in the front wall of the balloon neck.
As a consequence of the procedure followed to implant the valve in the inner walls of the corresponding balloon body, and also considering the specific heat application areas for the adhesion of the valve to said balloon, most of the valve body becomes a pendant without a specific use within the valve body which, to a certain extent, affects the quality and presentation of the product, especially In the case of relatively small balloons made of non-elastromeric plastic material.
An additional characteristic that, to a certain extent, is common to previous art products is related to the equipment used to implant valves in the balloon which required, and considering that the valve is handled as an additional body, the use of very sophisticated and expensive equipment which synchronizes the placement of both layers that make up the balloon body with the placement of the valve, since a fault, however small, would lead to the erroneous placement of the valve and the consequent waste of production line materials.
A clear case could be used to exemplify the kind of product we are concerned with, that is, the U.S. Pat. No. 4,927,646 granted on Apr. 17, 1990 invented by Mr. Gary Kieves which refers to a self-sealing flexible plastic valve for a balloon manufactured with a non-latex film. Said valve is manufactured with two flexible plastic sheets joined together to define a both a valve inlet and outlet and a passage with the inlet end of one of the sheets making up said valve overlapping the other to provide a placement fin which is joined to the balloon sheets in such a way that the inlet valve is placed within the balloon nozzle. A joint barrier at the inlet end prevents the total sealing of the nozzle during the manufacture of the balloon and also facilitates the automatic insertion of the valve in the balloon. The context of said application is incorporated as one of many documents making up the previous art.
On the basis of the above, it could be concluded that there is still a wide field for research and development in the design of valves for balloons arid other inflatable articles which tend to facilitate the manufacture of these products to make them competitive for products with smaller dimensions and consequently at a lower cost, while still guaranteeing a high quality product with a minimum distribution and market placement cost, and also facilitating the use of manufacturing equipment with lower investment costs, easier use and more recent in application, plus many other advantages that could be discovered as we describe the invention we are dealing with.
In order to make the benefits offered by the product referred to in this application in relation to previous technology products clearly understood, it is suffice to say that one of the elements that contributes to the high cost of the product is, among others, the complexity of the manufacturing processes performed to obtain the finished product with the previous technology; said stages could be summarized in the following manner, depending on whether the valves to be inserted are fed from a continuous roll with prefabricated and finished valves or by independent elements, i.e., one by one.
Stages of the valve-implanting process in a balloon fed on a roll basis:
A) a programmed feed is required that guarantees the delivery or freeing of just one valve per balloon;
B) a measured cut of the valve is required in order to avoid damage due to an incorrectly placed cut, which would obviously make said valve useless;
C) place the valve by means of a belt or arm in the exact place for implantation in the balloon body, initially fixing it to one of the balloon walls with heat;
D) seal the valve to the walls of the inflatable body, limiting such sealant to the obligatory positioning area in order to avoid producing a scrap product rather than a correctly valved one.
In reference to the procedure for the placement of a valve in an inflatable article, such as a balloon, which is done on the basis of individual feed, the procedure consists of the following steps:
a) cartridges or magazines are loaded to be used as a container for a given number of stacked valves, which implies constant replenishment of said container;
b) each one of the valves has to be collected from the respective cartridge or magazine by means of a positioning arm which in itself is a vacuum that acts on the valve to be picked up and placed In the exact position of the balloon;
c) the valve is delivered to the positioning area by the same positioning arm or belt and then, or simultaneous to this operation, it is initially sealed to at least one of the balloon walls and then;
d) the final stage corresponding to the total sealing of the valve to the neck walls or balloon tail is carried out.
From the above, it can be concluded that the implantation of the valve in the inflatable article according to the previous technology technique requires very accurate synchronized actions that ensure the placement of the valves in the inflatable article, this logically implies the acquisition of very complex equipment which requires high technology and an investment that may be too expensive, especially in the manufacture of small-sized balloons whose low market price cannot justify such investment; further it will be necessary to re-size and even red
Cox & Smith Incorporated
Rivell John
Schoenfeld Meredith H.
LandOfFree
Self-sealing valve for balloons or non elastomer articles,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Self-sealing valve for balloons or non elastomer articles,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-sealing valve for balloons or non elastomer articles,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2598977