Self-referenced tracking

Optics: measuring and testing – Position or displacement – Position transverse to viewing axis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S139030

Reexamination Certificate

active

06757068

ABSTRACT:

BACKGROUND
This invention relates to self-referenced tracking.
Virtual reality (VR) systems require tracking of the orientation and position of a user's head and hands with respect to a world coordinate frame in order to control view parameters for head mounted devices (HMDs) and allow manual interactions with the virtual world. In laboratory VR setups, this tracking has been achieved with a variety of mechanical, acoustic, magnetic, and optical systems. These systems require propagation of a signal between a fixed “source” and the tracked “sensor” and therefore limit the range of operation. They also require a degree of care in setting up the source or preparing the site that reduces their utility for field use.
The emerging fields of wearable computing and augmented reality (AR) require tracking systems to be wearable and capable of operating essentially immediately in arbitrary environments. “Sourceless” orientation trackers have been developed based on geomagnetic and/or inertial sensors. They allow enough control to look around the virtual environment and fly through it, but they don't enable the “reach-out-and-grab” interactions that make virtual environments so intuitive and which are needed to facilitate computer interaction.
SUMMARY
In one aspect, in general, the invention provides a new tracking technique that is essentially “sourceless” in that it can be used anywhere with no set-up of a source, yet it enables a wider range of virtual environment-style navigation and interaction techniques than does a simple head-orientation tracker, including manual interaction with virtual objects. The equipment can be produced at only slightly more than the cost of a sourceless orientation tracker and can be used by novice end users without any knowledge of tracking technology, because there is nothing to set up or configure.
In another aspect, in general, the invention features mounting a tracker on a user's head and using the tracker to track a position of a localized feature associated with a limb of the user relative to the user's head. The localized feature associated with the limb may include a hand-held object or a hand-mounted object or a point on a hand.
In another aspect, in general, the invention features mounting a sourceless orientation tracker on a user's head and using a position tracker to track a position of a first localized feature associated with a limb of the user relative to the user's head.
In another aspect, in general, the invention features tracking a point on a hand-held object such as a pen or a point on a hand-mounted object such as a ring or a point on a hand relative to a user's head.
In another aspect, in general, the invention features using a position tracker to determine a distance between a first localized feature associated with a user's limb and a second localized feature associated with the user's head.
In another aspect, in general, the invention features a position tracker which includes an acoustic position tracker, an electro-optical system that tracks LEDs, optical sensors or reflective marks, a video machine-vision device, a magnetic tracker with a magnetic source held in the hand and sensors integrated in the headset or vice versa, or a radio frequency position locating device.
In another aspect, in general, the invention features a sourceless orientation tracker including an inertial sensor, a tilt-sensor, or a magnetic compass sensor.
In another aspect, in general, the invention features mounting a display device on the user's head and displaying a first object at a first position on the display device.
In another aspect, in general, the invention features changing the orientation of a display device, and, after changing the orientation of the display device, redisplaying the first object at a second position on the display device based on the change in orientation.
In another aspect, in general, the invention features determining the second position for displaying the first object so as to make the position of the first object appear to be fixed relative to a first coordinate reference frame, which frame does not rotate with the display device during said changing of the orientation of the display device.
In another aspect, in general, the invention features displaying the first object in response to a signal from a computer.
In another aspect, in general, the invention features mounting a wearable computer on the user's body, and displaying a first object in response to a signal from the wearable computer.
In another aspect, in general, the invention features displaying at least a portion of a virtual environment, such as a fly-through virtual environment, or a virtual treadmill, on the display device.
In another aspect, in general, the invention features displaying a graphical user interface for a computer on the display device.
In another aspect, in general, the invention features first object being a window, icon or menu in the graphical user interface.
In another aspect, in general, the invention features the first object being a pointer for the graphical user interface.
In another aspect, in general, the invention features changing the position of the first localized feature relative to the position tracker and, after changing the position of the first localized feature, redisplaying the first object at a second position on the display device determined based on the change in the position of the first localized feature.
In another aspect, in general, the invention features displaying a second object on the display device, so that after changing the position of the first localized feature, the displayed position of the second object on the display device does not change in response to the change in the position of the first localized feature.
In another aspect, in general, the invention features determining the second position so as to make the position of the first object appear to coincide with the position of the first localized feature as seen or felt by the user.
In another aspect, in general, the invention features changing the orientation of the first coordinate reference frame in response to a signal being received by the computer.
In another aspect, in general, the invention features changing the orientation of the first coordinate reference frame in response to a change in the position of the first localized feature.
In another aspect, in general, the invention features changing the orientation of the first coordinate reference frame in response to a signal representative of the location of the user.
In another aspect, in general, the invention features changing the orientation of the first coordinate reference frame in response to a signal representative of a destination.
In another aspect, in general, the invention features changing the orientation of the first coordinate reference frame in response to a signal representative of a change in the user's immediate surroundings.
In another aspect, in general, the invention features changing the orientation of the first coordinate reference frame is changed in response to a signal representative of a change in the physiological state or physical state of the user.
In another aspect, in general, the invention features redisplaying the first object further comprises changing the apparent size of the first object according to the change in position of the first localized feature.
In another aspect, in general, the invention features mounting a portable beacon, transponder or passive marker at a fixed point in the environment and determining the position vector of a second localized feature associated with the user's head relative to the fixed point.
In another aspect, in general, the invention features determining the position vector of the first localized feature relative to the fixed point.
In another aspect, in general, the invention features mounting a sourceless orientation tracker on a second user's head and determining the position of a localized feature associated with the body of the second use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self-referenced tracking does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self-referenced tracking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-referenced tracking will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3355772

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.