Communications: directive radio wave systems and devices (e.g. – Directive – Including a steerable array
Reexamination Certificate
2003-01-22
2004-07-13
Blum, Theodore M. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Directive
Including a steerable array
Reexamination Certificate
active
06762719
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to radio-frequency (RF) antennas, and, in particular, to more easily oriented antenna structures and systems.
BACKGROUND OF THE INVENTION
The design of RF antennas can be exceedingly complex and mathematically and empirically intense due to the wide range of tradeoffs involving frequency response, sensitivity, directionality, polarizations, and so forth. Conventional antennas, such as open loops and parallel element arrays are limited in terms of applicability, such that, quite often, a particular geometry is relegated to a dedicated frequency band or direction.
It has been found that so-called fractal antennas offer certain advantages over conventional designs, including smaller size and desirable performance at multiple frequencies. In addition to greater frequency independence, such antennas afford enhanced radiation, since the often large number of sharp edges, corners, and discontinuities each act as points of electrical propagation or reception.
The term ‘fractal’ was coined by Benoit Mandelbrot in the mid-70s to describe a certain class of objects characterized in being self-similar and including multiple copies of the same shape but at different sizes or scales. Fractal patterns and multi-fractal patterns have by now been widely studied, and further information on fractal designs may be found in
Frontiers in Electromagnetics
, IEEE Press Series on Microwave Technology and RF, 2000, incorporated herein by reference.
Fractal antennae were first used to design multi-frequency arrays. The Sierpinski gasket antenna, which resembles a triangle packed with differently sized triangles of the same general orientation, was the first practical antenna to maintain performance at several (5) bands. Other fractal geometries used in antenna design include the Sierpinski carpet, which may be viewed as a square-within-a-square version of the Sierpinski gasket, as well as the snowflake or Koch curve, which has also been used in monopole form.
In designing an antenna based upon a folded or convoluted fractal-type geometry, the resonance frequencies may be a function of multiple parameters, including the shape of the structuring or replicated element, the size of the smallest element, and the number of scaling factors used simultaneously in the pattern. Despite the improved performance of antennas based upon fractal geometries, existing designs exhibit certain disadvantages. In particular, though self-similar, conventional fractals are based upon a heterogeneous reproduction of structuring elements limited to transformations in terms of rotation, translation, and scale, fractal structures utilize a subset of a Hutchinson operator W, wherein a regular shape, such as a triangle or square is iterated such that the same behavior may be obtained, albeit at multiple frequencies. Increased degrees of freedom are required to design structures with appropriate gain, beam patterns, polarization response, and other desirable characteristics.
SUMMARY OF THE INVENTION
This invention improves upon the existing art by providing an antenna pattern on a three-dimensional object to optimize gain, beam pattern, polarization response, or other qualities despite or independently of physical orientation. In the preferred embodiment a fractal array is used on a polyhedron, though non-fractal and other self-replicating antenna patterns may be generated through the use of additional transformations and candidate geometric shapes to achieve patterns which are not only arbitrary in terms of wavelength/frequency, but also permit variable radiation patterns and variable polarization other desirable criteria. In addition to the use of variable scaling, geometric patterns, and the like, multiple structures may be placed within the same spatial footprint to permit reception over more bands.
According to yet a further aspect of the invention, a dynamic reconfigurable antenna array is provided, enabling a single device to be simultaneously tuned to different or multiple frequencies or other response criteria. The antenna array may be made directional in its radiation (or reception) pattern either by changing the configuration of the array, changing the feed points in the array, or electrically steering the pattern using standard beam formatting techniques on multiple taps.
In a reconfigurable implementation, switches at key points of the structure enable the pattern to be changed dynamically. Such switching may be carried out in real time in accordance with transmissions/reception characteristics, or in advance using simulations associated with the switched elements. The switches may be implemented with any appropriate technology, including electrical switches such as MOSFETs, though, in the preferred embodiment, MEMS mechanical switches are used to ensure that the resulting pattern includes continuous metalization for the least amount of leakage and unwanted artifacts.
As an alternative to a fixed pattern with switches used to swap elements or change feed points, a reconfigurable multi-dimensional array may be used having an active area optimized to maximize reception for a desired frequency and/or direction. This aspect of the invention may exploit flat-panel technology, wherein, for example, a transparent conductor array ‘face’ may be mapped to an addressable interconnect back plane to achieve a desired level of reconfigurability.
REFERENCES:
patent: 4728805 (1988-03-01), Dempsey
patent: 6292134 (2001-09-01), Bondyopadhyay
patent: 6392610 (2002-05-01), Braun et al.
patent: 6525691 (2003-02-01), Varadan et al.
Burns Joseph
Roussi Christopher
Subotic Nikola
Altarum Institute
Blum Theodore M.
Gifford Krass Groh Sprinkle Anderson & Citkowski PC
LandOfFree
Self-orienting antenna array systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Self-orienting antenna array systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-orienting antenna array systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3249693