Self-monitoring method and apparatus for condition...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S605000, C073S037000, C073S040000, C137S557000

Reexamination Certificate

active

06720882

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and system for the remote condition monitoring of a structure, such as for example a welded structure in remote, inaccessible, and submerged locations and, is particularly suited to pipelines including submerged steel catenary risers.
BACKGROUND OF THE INVENTION
Submerged or buried pipelines or other structures on locations such as mine sites, established chemical plants etc or in locations difficult to access, such as in nuclear power stations, or structurally sealed compartments in submarines present a problem in condition monitoring for the formation of cracking, which may arise due to vibration or dynamic loading. Often such cracking will initiate in a stress riser in the pipeline or structure, such as a weld or other joint. In the case of a pipeline, mobile internal pipe inspection equipment does not have the resolution to locate small flaws such as cracking of welds. Further, the use of such equipment often requires the shutdown of the pipeline in question. The monitoring of submarine compartments structurally sealed for long periods of time presents great difficulty for condition monitoring.
Also present known remote condition monitoring systems are often unreliable and difficult, if not impossible, to test. Accordingly it is at times hard to discern between the existence of an actual crack or a fault in the monitoring system itself.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a self-monitoring or self-testable method and system that facilitates remote condition monitoring of a structure to which it is applied, to give early warning of a flaw in a reliable and repeatable manner.
According to a first aspect of the present invention there is provided a self-monitoring or self-testable method for condition monitoring of a structure including the steps of:
forming one or more substantially sealed first cavities on or between surfaces of, or within said structure;
providing a fluid source of substantially constant pressure relative to a reference pressure where said constant pressure and said reference pressure are not the same;
coupling said fluid source to said first cavities through respective high fluid impedance devices sufficient to create detectable respective pressure differentials between said source and said first cavities across said high impedance devices;
providing a fluid capacitance in operative association with said first cavities and corresponding high fluid impedance devices to facilitate transient flow of fluid through said corresponding high fluid impedance devices; and,
providing a telemetry system operatively associated with said high impedance devices for monitoring transient or varying pressure differential across each high impedance device and, when a change in said pressure differential is monitored, providing a signal indicative of the location of the cavities coupled with said high impedance device across which said pressure differential is monitored.
Preferably said step of providing a telemetry system includes providing a plurality of differential pressure switches, each switch coupled across a respective high impedance device.
Preferably said step of providing said telemetry system further includes:
providing a fluid source pressure monitor switch having a first input in fluid communication with said fluid source and a second input in fluid communication with a said reference pressure, said fluid source pressure monitor switch arranged to change state when fluid pressure at its first input is substantially equal to the reference fluid pressure at its second input; and,
configuring said telemetry system to provide a signal indicative of a change in state of said fluid source pressure monitor switch.
Preferably said step of providing a telemetry system further includes providing a signal communication path between said differential pressure switches and said fluid source pressure monitor switch enabling said telemetry system to communicate with said switches.
Preferably said differential pressure switches are coupled in said signal communication path in a manner to enable parallel communication with said telemetry system.
Preferably said fluid source pressure monitor switch is coupled in series in said signal communication path.
In one embodiment said signal communication path is provided as a radio signal path.
In another embodiment, said signal communication path is provided as a plurality of transmission lines where said differential pressure switches are coupled parallel with each other across said transmission lines. Advantageously, said fluid source pressure monitor switch is coupled in series with said transmission lines in order to monitor the pressure condition of the fluid at an end remote from the source and confirm complete continuity of said transmission lines. In one variation, when said structure is made from an electrically conductive material, one of said transmission lines is comprised of said structure.
Preferably the step of providing said telemetry system further includes providing an AC signal generator for producing AC signals of different frequencies and transmitting said AC signals along said transmission lines; and
coupling a respective resonant trap or band pass filter in series with each differential pressure switch, said series resonance traps or band pass filters tuned to said different frequencies.
Preferably said method further includes coupling respective electrical chokes in parallel with each resonant trap or band pass filter.
In an alternate embodiment, said method includes the step of providing each switch with a unique address which is communicated via said transmission lines when a switch undergoes a change in state. In this embodiment said step of providing said telemetry system includes providing a processor based device in communication with said switches via said transmission lines for reading said addresses.
Preferably said step of providing said fluid source includes providing a gas at a substantially constant negative pressure relative to said reference pressure. When said reference pressure is ambient atmospheric pressure said negative pressure is a sub-atmospheric pressure. In this instance, advantageously said sub-atmospheric pressure is a vacuum. When said fluid source is a gas source said fluid capacitance is constituted by inherent elastic characteristic of gas provided by the source and the finite volume of at least said first cavities.
In an alternate embodiment, said step of providing said fluid source includes providing a liquid at a substantially constant pressure whilst the reference pressure is a liquid at a lower pressure.
In a further alternate embodiment, said step of providing said fluid source includes providing a liquid source at a substantially constant pressure whilst the reference pressure is a liquid at a higher pressure.
When using a liquid source said step of providing a fluid capacitance includes providing a pressure variable volume or simulated liquid capacitance such as an accumulator.
The provision of the fluid capacitance facilitates a self test or self monitoring behaviour that can be exploited by the sudden application of a fluid source of substantially constant pressure relative to a reference pressure, applied to the system wholly or separately to a particular cavity or cavities.
To facilitate the self-testing or self-monitoring feature, the method further includes the steps of:
temporarily coupling said first cavities to said reference pressure to substantially equalise fluid pressure in said first cavities and said high impedance devices with said reference pressure; and,
subsequently recoupling said fluid source to said first cavities to produce a transient fluid flow through said fluid capacitance and a consequential transient differential pressure sequentially across each high fluid impedance device thereby inducing sequential cyclic switching of said differential pressure switches.
Preferably said method further includes providing one or more second cavities in pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self-monitoring method and apparatus for condition... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self-monitoring method and apparatus for condition..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-monitoring method and apparatus for condition... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3257792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.