Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1999-11-29
2001-11-27
Gray, Linda (Department: 1734)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S248000, C156S253000, C156S268000, C156S277000, C283S081000, C283S082000, C283S107000, C283S108000, C283S109000, C040S625000, C040S626000, C040S675000, C428S040100, C428S041800, C428S042200
Reexamination Certificate
active
06322655
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to identification cards which are integrated into business forms and, more particularly, to identification cards which allow for both personal and manual lamination on both sides of the card, while occupying only the space of a single card on a business form.
BACKGROUND OF THE INVENTION
Wallet size identification cards have become quite prevalent over the past decade. Some examples of these cards are employee identification cards, membership cards, bond cards, insurance cards, and retailer preferred cards. Since these cards are often removed from wallets, handled, and replaced repeatedly throughout a day, they experience a great deal of wear. Moreover, these cards are often lost or stolen, which poses a security risk to the card holders as well as the card suppliers.
The increased demand for personal cards has provided card suppliers with three major obstacles: how to reduce or eliminate the wear on the card, how to safeguard against forgery, and how to package a partially pre-printed card while minimizing manufacturing costs.
For quite some time, card suppliers have addressed the wear problem while ignoring the security problem. Their solution was to use plastic cards instead of paper cards with the card holders placing their signatures on a designated location on the outer surface of the card. This practice has several drawbacks. Business indicia may be often scratched off or otherwise worn away through everyday use. In terms of security, wrongdoers may remove ink signatures from the designated location and place their own signatures on the card. In addition, wrongdoers may tamper with and alter a business' indicia, such as the company name, titles, and barcodes.
To minimize forgery, many companies take the extra step of laminating their cards after the card holders have signed their cards. In addition, some companies require their card holders to provide a small photograph, which is affixed to the cards prior to lamination. This extra step is costly in terms of time because it requires two mailings: a mailing from the card holder to the card supplier and a return mailing of the laminated card from the card supplier to the card holder.
Over the years, several techniques have been developed with regard to “packaging” a card. In short, packaging a card is simply finding a way to integrate a card into a business form, usually 8.5″ by 11″ in size, in such a way so that the card holder should be able to easily remove the card from the business form. Some of these techniques have also attempted to solve the problems of wear and forgery.
Non-Lamination
The non-lamination technique involves the printing of images using conventional printing equipment on heavy weight paper and perforating a portion of the paper to form the personal card. The card holders simply tear the card away from the rest of the form. The main problems with this technique are wear and forgery. Another disadvantage is the card has rough edges.
Single-Side Lamination
The single-side lamination technique involves coating of a portion of one side of a heavy weight paper with a lamina. The unlaminated side of the card may be used to print identifying information for the card supplier and user. The portion of the paper containing the card is perforated, with the lamina also being perforated along the edge of the card, for removal of the card from the business form.
One version of the single-side technique is disclosed in U.S. Pat. No. 3,854,229 [Morgan]. This technique involves a label consisting of four layers (from top to bottom): paper, release coating, adhesive and lamina, with all four layers being die-cut in a rectangular shape. Next, the paper and release coating are die-cut in similar rectangular dimensions, but smaller than the prior die-cut. Identifying information may be printed or written upon the label. A paper border is peeled away and the main paper face is peeled away from the bottom two layers, flipped over with the label face containing the printed information facing down, and inserted on top of the lamina layer. The label may then be adhered to any article to identify that article.
Another label, exhibiting the single-side technique, is disclosed in U.S. Pat. No. 5,639,125 [Garrison]. In one embodiment, the Garrison patent discloses a card consisting of the following seven layers: upper paper layer, upper adhesive, upper release, lamina, lower adhesive, lower release, and a lower paper layer. A first die-cut extends from the upper paper layer through the upper release layer, defining the shape of the label. A second die-cut extends from the upper paper layer through the lower release layer, but the perimeter is larger than that of the first die-cut. Identifying data may be written or printed on the upper paper layer, and peeled away from the other layers and adhered to an article. The remaining lamina may be removed from the backer adhered over the label resulting in the label having a laminated covering over its outer surface.
Another version of the single-side technique is disclosed in U.S. Pat. No. 5,462,488 [McKillip]. Generally, this single-side technique consists of four layers: upper material, lamina, removable adhesive, and lower material. A die-cut extends from the upper material through the removable adhesive, defining the shape of the card. The upper material may have identifying data written or printed onto it as desired. Next, the upper material and lamina are peeled away from the lower material, resulting in a card laminated on one side.
Similarly, a group of related patents to Garrison, U.S. Pat. Nos. 5,466,013; 5,589,025 and 5,589,025, disclose a single-side technique consisting of the following layers: a paper layer, pressure sensitive adhesive, upper lamina, dry adhesive, and lower lamina. A die-cut extends from the paper layer through the dry adhesive. The paper layer may have identifying data printed or written on it as desired. Because the dry adhesive is rupturable, the top three layers may be peeled away so that the resulting card is laminated on its backside.
The single-side technique has the disadvantage of wear, and it fails to safeguard against forgery. The paper side, which contains identifying indicia, and possibly a signature, remains exposed or, if the face of the card is laminated, the printing or signature is still not sealed. Thus, the paper may be torn, and the print and signature may be worn away or removed.
Double-Side Lamination
Exterior Printing/Signing Technique
The exterior printing/signing technique is disclosed in U.S. Pat. Nos. 5,096,229 and 5,131,686, both to Carlson. This technique consists of spot coating a portion of the front and back of heavy weight paper with lamina. Printing of identifying information is accomplished on the exterior of the lamina. A portion of the lamina is then perforated to allow card holders to remove the card from the form. The main disadvantage of this technique is the printing and signing occurs on the lamina, failing to address the problems of wear and forgery.
Foldover Technique
The foldover technique includes a group of patents teaching a common technique with slight variations. This technique, referred to as the foldover technique, generally involves coating the underside of paper with a strip of lamina, the length of two cards. After coating, the paper is die-cut in a rectangular pattern, having twice the length of one card, and a rectangular border is perforated. The large rectangle is divided into two halves by means of an additional perforation. One half of the double card is peeled away exposing the underlying lamina and adhesive layer with the other half carrying identifying indicia. Next, the entire rectangle of the double card is removed from the business form and the two halves of the double card are folded over onto each other along the additional perforation, with the lamina on the exterior and paper on the interior.
Another version of the foldover technique is taught in U.S. Pat. No. 5,509,693 [Kohls&rs
Gray Linda
Haldiman Robert C.
Hawkins Cheryl N.
Kang Grant D.
Precision Coated Products
LandOfFree
Self-laminating integrated card and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Self-laminating integrated card and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-laminating integrated card and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2613367