Self docking electrical connector

Electrical connectors – Coupling part with actuating means urging contact to move... – Urging stacked contacts to move with respect to rest of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S034000, C439S188000, C439S660000, C439S817000, C200S051100

Reexamination Certificate

active

06244884

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to automotive electrical connections and more particularly to self-guiding electrical connections for connecting peripheral devices within an automobile.
BACKGROUND OF THE INVENTION
For economic reasons, automobile manufacture has become increasingly modularized and subdivided among various original equipment manufacturers and aftermarket parts suppliers. Accordingly, OEM electrical appliances within an automobile may originate from different sources. As a result, extensive efforts have been made to standardize electrical connections within the vehicle to accommodate multiple suppliers. Additionally, aftermarket appliances are increasingly made available directly to consumers. Often, installation of the aftermarket appliances requires that any electrical connection to the vehicle be made after first removing an existing component and then substituting the aftermarket appliance in its place.
For example, aftermarket vehicle console units are being made available to automobile purchasers that include various electronic and/or entertainment devices, such as sound and audio-visual entertainment systems. To replace an original equipment center console unit with an aftermarket one, the original unit first must be physically disconnected from the automobile before removal therefrom. Second, the original unit must be electrically disconnected from the vehicle before removal and before installation of the new aftermarket unit. Finally, once the new console is installed, it is not readily removable.
In existing automotive electrical system designs, disconnection of an existing appliance requires actual disconnection of wiring from the appliance, generally using a standardized plug and socket arrangement. Plug and socket connections are advantageous because they eliminate bare or open contact leads that may lead to inadvertent shorting of the automotive electrical system. However, modification of plug and socket connections once an automobile leaves a factory is extremely difficult. Also, exposed portions of plug and socket connections are always electrically charged. And plug and socket electrical connections are not conducive to repeated disconnection and removal of installed appliances, for example, as a method to prevent theft.
Additionally, often the location of an existing plug is incompatible with or remote from the socket on aftermarket appliances, or else the wire lead length is insufficient to easily interconnect to the new device. Moreover, in existing electrical system designs, electrically connecting a new device requires manually locating and physically reconnecting the socket and plug, either before or after physical installation of the new device, thereby adding to installation time and effort. Finally, in those systems where an existing appliance is not replaced, but is instead simply added, extensive time and effort are required to install the new unit, either because additional wiring must be added or because new electrical connections must be made to interface the new appliance with the automobile electrical system.
Accordingly, an easily connectable and disconnectable electrical connection is needed to provide simple and safe connection and disconnection of electrical appliances to an automobile electrical system without threatening the integrity of the electrical system.
SUMMARY OF THE INVENTION
The above-described disadvantages of current electrical connection systems are overcome by the self docking electrical connector of the present invention. The connector of the present invention includes first and third fixed contacts and an intermediate fixed sliding contact. The first and third contacts are mounted on male and female connectors, respectively, and the intermediate contacts are mounted on a slideable plate.
In the preferred embodiment, the plate is slideably mounted on an upper tray surface of the female connector and is capable of sliding movement between a connected and a disconnected position. In the disconnected position, the intermediate contacts are resiliently biased by a biasing member away from contacting the third contacts, therefore creating an open circuit between the intermediate and third contacts. However, in the connected position, the intermediate contacts are forced into positive contact with the third contacts, thereby creating an electrical connection therebetween.
The male member includes at least one actuator post extending outwardly from a main body of the male member. A distal end of an actuator post projection includes a first cam surface designed to interact with a second cam surface located on an upper surface of the plate. Most preferably, the actuator post extends normal to the male body such that the angle of incidence of the actuator post onto the upper surface of the plate is approximately normal to the upper surface of the plate.
In operation, the male body is brought into facing contact with the female body such that the first cam surface on the actuator post projection contacts the second cam surface on the upper surface of the slideable plate. As the first and second cam surfaces interact, a lateral force is exerted on the plate sufficient to overcome the resilient biasing force of the biasing member, forcing the plate to slidably move from the disconnected to the connected position. When the actuator post is fully inserted into the female member, the slideable plate will have completely moved to the connected position, thereby causing an electrical connection between the intermediate and the third contacts. Moreover, when the actuator post is fully inserted, the first contacts mounted on the male connector are forced into positive electrical contact with the intermediate contacts, thereby forming a complete circuit between the first, intermediate and third contacts, and therefore between the male and the female connectors. Importantly, the resilient member is not itself used as an electrical conductor. Instead, opposed cam surfaces on respective male and female connectors slide a fixed intermediate contact mounted on the female connector into electrical engagement with first and third contacts rigidly retained on the male and female member, respectively. Therefore, the resiliently biased slideable plate is actuated as a cam follower by the male connector actuator post inserted at an angle normal to the sliding plate. Additionally, the actuator post may be sufficiently large to provide structural support to any device attached to the male connectors. To save space, the plate is mounted to the female connector. However, the slidable plate may be mounted in any convenient place to accomplish sliding motion between an engaged and disengaged positions. For instance, the slidable plate may be mounted to the male connector if desired, but if mounted to the male connector, which is inserted into the female connector, then the male extension would have to be made longer.
Using the self docking electrical connector of the present invention, an automotive peripheral electrical device may be quickly and easily attached and detached from the automotive electrical system. The connector is flexible, because the terminals may transmit any type of information, including electrical current or control information (including fiberoptic data transmission).
Because the slideable plate is resiliently biased to a disconnected position, the connector is preferentially uncharged. Thus, the intermediate terminals pose no danger to the automotive electrical system (through shorts or grounds) when the male connector is not attached to the female connector, and may therefore be exposed and easily accessible. The connector therefore provides a simple yet inherently stable electrical connection mechanism that may be utilized with both original equipment and aftermarket appliances such as seats, instrument clusters, switches, restraint systems or any other device requiring electrical coupling within the vehicle.


REFERENCES:
patent: 3949180 (1976-04-01), Ojima et al.
patent: 3951494 (1976-04-01), Romi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self docking electrical connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self docking electrical connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self docking electrical connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2464404

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.