Self-contained cooling system feed and bleed system

Liquid purification or separation – Constituent mixture variation responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S139000, C210S143000, C210S167050, C210S199000, C210S206000, C210S258000, C210S149000, C422S108000, C422S110000, C422S116000

Reexamination Certificate

active

06740231

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to apparatuses, methods and systems for monitoring and/or controlling water treatment More specifically, the present invention relates to apparatuses, methods and systems for monitoring and/or controlling water treatment of aqueous systems, such as water cooling systems or other like industrial water systems.
BACKGROUND OF THE INVENTION
Most industrial waters contain alkaline earth metal cations, such as calcium, barium, magnesium, and several anions, such as bicarbonate, carbonate, sulfate, oxalate, phosphate, silicate and fluoride. When combinations of these anions and cations are present in concentrations which exceed the solubility of their reaction products, precipitates can form until the product solubility concentrations are no longer exceeded. For example, when the concentrations of calcium ion and carbonate ion exceed the solubility of the calcium carbonate reaction products, a solid phase of calcium carbonate will form.
Solubility product concentrations are exceeded for various reasons, such as partial evaporation of the water phase, change in pH, pressure or temperature, and the introduction of additional ions which form insoluble compounds with the ions already present in the solution. As these reaction products precipitate on surfaces of the water carrying system, they form scale or deposits. This accumulation prevents effective heat transfer, interferes with fluid flow, facilitates corrosive processes and harbors bacteria This scale is an expensive problem in many industrial water systems causing delays and shutdowns for cleaning and removal.
Many other industrial waters, while not being scale forming, tend to be corrosive. Such waters, when in contact with a variety of metal surfaces such as ferrous metals, aluminum, copper and its alloys, tend to corrode one or more of such metals or alloys. A variety of compounds have been suggested to alleviate these problems. Such materials are low molecular weight polyacrylic acid polymers. Corrosive waters of this type are usually acidic in pH and are commonly found in closed recirculating systems.
Numerous compounds have been added to these industrial waters in an attempt to prevent or reduce scale and corrosion. One such class of materials are the well known organophosphonates which are illustrated by the compounds hydroxyethylidene diphosphonic acid (HEDP) and phosphonobutane tricarboxylic acid (PBTC). Another group of active scale and corrosion inhibitors are the monosodium phosphinicobis (succinic acids)
Biofouling has also been problematic in industrial water systems, such as cooling towers, heat exchangers and air washers, because it can also adversely affect heat transfer efficiency and fluid frictional resistance, thereby subsequently reducing production rates. In addition, biofouling can also play an important role in microbiologically influenced corrosion.
Biofouling can occur when microorganisms attach to inert surfaces forming aggregates with a complex matrix consisting of extracellular polymeric substances. This consortium of attached microorganisms and the associated extracellular polymeric substances is commonly referred to as a biofilm.
The most common way to control biofouling is through the application of chemical biocides such as chlorine, bromine, isothiazolones, glutaraldehyde or other antimicrobials. These biocides are added in an attempt to kill both planktonic and attached microorganisms.
In general, scale deposition, corrosion and/or biofouling of aqueous systems can be treated by adding a chemical and/or biological treatment agent to the aqueous system, typically via a controlled delivery device. Conventional treatment generally requires large containers of treatment chemicals, typically at least 5 gallons in size and often times 55 gallons in size or greater. Further, the installation of conventional water treatment systems typically includes installing piping and solenoid valves for tower bleed, electrical supply for a variety of pumps and controllers, electrical connections between pumps, controllers and solenoid valves, and tapping water lines for chemical feed points. The size and installation requirements of conventional water treatment systems of this type can be expensive as well as excessive (i.e., not practical), particularly with respect to smaller and/or medium-sized aqueous systems, to aqueous systems where installation services are scarce, expensive or where main power is limited or not available and the like. These types of aqueous systems are typically located at, for example, college and university campuses, office buildings, hotels, motels, emerging countries, demote locations or the like.
A need, therefore, exists to monitor and/or control water treatment of aqueous systems for scale deposition, corrosion, biofouling or the like to minimize costs and to increase the adaptability of treatment to such aqueous systems where conventional treatment can be difficult and even impractical to implement.
SUMMARY OF THE INVENTION
The present invention provides apparatuses, methods and systems for monitoring and/or controlling water treatment of aqueous systems, such as water cooling systems or other like industrial water systems. The present invention provides a self-contained treatment unit that can be controllably adapted to bleed or remove water from the aqueous system and to feed or deliver treatment agents to the aqueous system for treating scale, corrosion, biofouling, other like conditions or combinations thereof The self-contained treatment unit of the present invention can be readily installed without requiring extensive piping, electrical wiring, power from a main power source or the like. This allows the apparatus of the present invention to be suitably and desirably adapted for use, particularly with small to medium-sized aqueous systems, such as water cooling systems that have less than 100 ton capacity.
To this end, in an embodiment of the present invention, an apparatus for self-contained treatment of an aqueous system is provided. The apparatus includes a housing that encloses a controller, a feed pump and a treatment agent contained within one or more containers. The apparatus further includes a sensor that electrically communicates with the controller for measuring a parameter of water within the aqueous system, and q bleed pump that electrically communicates with the controller such that the controller controllably activates the bleed pump when the parameter is at or exceeds a predetermined level wherein the bleed pump removes water from the aqueous system upon activation. The feed pump also electrically communicates with the controller such that the controller controllably activates the feed pump during activation of the bleed pump wherein the feed pump acts to deliver the treatment agent to the aqueous system.
In another embodiment, an apparatus for monitoring and controlling treatment of a water cooling system is provided. The apparatus includes a self-contained treatment unit including a control device, an inhibitor feed pump and an inhibitor agent contained within one or more containers wherein the self-contained treatment unit is powered by a 12 volt power source. The apparatus further includes a conductivity sensor electrically communicating with the control device such that the conductivity sensor transmits a signal to the control device indicative of electrical conductivity of water within the aqueous system, and a submersible bleed pump electrically communicating with the control device such that the control device controllably activates the bleed pump when the signal is at or exceeds a preset value wherein the submersible bleed pump removes water from the water cooling system upon activation thereof. The inhibitor feed pump also electrically communicates with the control device such that the control device controllably activates the inhibitor feed pump wherein the inhibitor feed pump acts to deliver the inhibitor agent to the water cooling system for treating scale and/or corrosion.
In yet anothe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self-contained cooling system feed and bleed system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self-contained cooling system feed and bleed system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-contained cooling system feed and bleed system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.