Self-closing spring probe

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06396293

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to electrical contact probes forming electrical interconnects and, more particularly to spring-loaded contact probes, having springs external to the electrical interconnects formed by the probes, which are used in electrical testing applications such as providing electrical contact between diagnostic or testing equipment and an electrical device such as an integrated circuit under test.
BACKGROUND OF THE INVENTION
Conventional spring-loaded contact probes generally include a movable plunger
2
, a barrel
3
having an open end
4
for containing an enlarged diameter section or bearing
6
of the plunger, and a spring
5
for biasing the travel of the plunger in the barrel (FIGS.
1
A and
1
B). The plunger bearing
6
slidably engages the inner surface of the barrel. The enlarged bearing section is retained in the barrel by a crimp
7
near the barrel open end.
The plunger is commonly biased outwardly a selected distance by the spring and may be biased or depressed inwardly into the barrel, a selected distance, under force directed against the spring. Axial and side biasing of the plunger against the barrel prevents false opens or intermittent points of no contact between the plunger and the barrel. The plunger generally is solid and includes a head or tip
9
for contacting electrical devices under test. The barrel may also include a tip opposite the barrel's open end.
The barrel, plunger and tip(s) form an electrical interconnect between the electrical device under test aid test equipment and as such, are manufactured from an electrically conductive material. Typically the probes are fitted in cavities formed through the thickness of a test plate or socket. Generally a contact side of the electrical device to be tested, such as an integrated circuit, is brought into pressure contact with the tips of the plungers protruding through one side of the test plate or test socket for maintaining spring pressure against the electrical device. A contact plate connected to the test equipment is brought to contact with the tips of the plungers protruding through the other side of the test plate or test socket. The test equipment transmits test signals to the contact plate from where they are transmitted through the test probe interconnects to the device being tested. After the electrical device has been tested, the pressure exerted by the spring probes is released and the device is removed from contact with the tip of each probe. In conventional systems, the pressure is released by moving the electrical device and probes away from one another, thereby allowing the plungers to be displaced outwardly away from the barrel under the force of the spring, until the enlarged-diameter bearing of the plunger engages the crimp
7
on the barrel.
The process of making a conventional spring probe involves separately producing the compression spring, the barrel and the plunger. The compression spring is wound and heat treated to produce a spring of a precise size and of a controlled spring force. The plunger is typically turned on a lathe and heat treated. The barrels are also sometimes heat treated. The barrels can be formed in a lathe or by a deep draw process. All components may be subjected to a plating process to enhance conductivity. The spring probe components are assembled either manually or by an automated process.
To assemble an internal spring configuration spring probe shown in
FIG. 1A
, the compression spring is first placed in the barrel, the plunger bearing
6
is then inserted into the barrel to compress the spring, and the barrel is roll crimped near its open end forming crimp
7
to retain the plunger. In assembling an external spring configuration spring probe shown in
FIG. 1B
, the spring is placed over the plunger and rests against a flange surface
8
formed on the base of the plunger tip
9
. The plunger bearing is then inserted into the barrel and the barrel is roll crimped forming crimp
7
for retaining the bearing. The spring is sandwiched between flange surface
8
and the rim
11
of the open end of the barrel. Some internal spring configuration probes consist of two plungers each having a bearing fitted in an opposite open end of a barrel. The two plungers are biased by a spring fitted in the barrel between the bearings of each plunger.
As can be seen the assembly of the probes is a multiple step process. Considering that probes are produced by the thousands, a reduction in the equipment and the steps required to produce the probes will result in substantial savings.
An important aspect of testing integrated circuit boards is that they are tested under high frequencies. As such impedance matching is required between the test equipment and integrated circuit so as to avoid attenuation of the high frequency signals. As discussed earlier, the probes are placed in cavities in a test socket. Due to the numerous probes that are used in a relatively small area in the socket, the spacing between probes is minimal making impedance matching infeasible. In such situations, in order to avoid attenuation of the high frequency signals, the length of the electrical interconnects formed by the probes must be kept to a minimum. With current probes, when the interconnect length is minimized so is the spring length and thus, spring volume.
A spring's operating life, as well as the force applied by a spring are proportional to the spring volume, i.e, the spring wire length, the diameter of the wire forming the spring, and the diameter of the spring itself. Consequently, the spring volume requirements for a given spring operating life and required spring force are in contrast with the short spring length requirements for avoiding the attenuation of the high frequency signals. For example, in internal spring configuration probes, the compressed length (also referred to herein as the “solid length”) of the spring is limited by the barrel length minus the length of the plunger enlarged bearing section, minus the length of the barrel between the crimp and the barrel open end and minus the distance of plunger travel. Since the diameter of the spring is limited by the diameter of the barrel which is limited by the diameter of the cavities in the test sockets, the only way to increase the spring volume for increasing the spring operating life, as well as the spring force, is to increase the overall barrel length. Doing so, however, results in a probe having an electrical interconnect of increased length resulting in the undesirable attenuation of the high frequency signals.
Typically for a given application a given spring compliance is required. Probe spring compliance is defined by the distance of spring extension from its fully compressed position to its fully extended position in the probe. Consequently, with conventional probes the volume of the spring is limited by the required compliance. A longer spring incorporated in a conventional internal or external spring probe will reduce the plunger stroke length and thus, reduce the distance that the spring can extend from a fully compressed position. Thus, for a given probe, as the spring compliance increases, the spring volume decreases and so does the spring operating life.
An alternative type of conventional probe consists of two contact tips separated by a spring. Each contact tip is attached to a spring end. This type of probe relies on the walls of the test plate or socket cavity into which it is inserted for lateral support. The electrical path provided by this type of probe spirals down the spring wire between the two contact tips. Consequently, this probe has a relatively long electrical interconnect length which may result is attenuation of the high frequency signals when testing integrated circuits.
Thus, it is desirable to reduce the electrical interconnect length of a probe without reducing the spring volume. In addition, it is desirable to increase the spring volume without decreasing the spring compliance or increasing the electrical interconnect length. Moreover, a p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self-closing spring probe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self-closing spring probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-closing spring probe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2890469

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.