Self cleaning ink jet printhead cartridges

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S022000, C347S028000

Reexamination Certificate

active

06267464

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Reference is made to commonly assigned U.S. patent applications Ser. No. 09/127,546 filed Jul. 31, 1998, by Ghosh et al, entitled “Non-Contact Ultrasonic Cleaning of Ink Jet Printhead Cartridges”; U.S. patent application Ser. No. 09/159,725 filed Sep. 24, 1998, by Ghosh et al, entitled “Ultrasonic Cleaning of Ink Jet Printhead Cartridges”; U.S. patent application Ser. No. 09/132,628 filed Aug. 11, 1998, by Ghosh et al, entitled “Vacuum Assisted Ultrasonic Cleaning of Ink Jet Printhead Cartridges”; and U.S. patent application Ser. No. 09/179,498 filed Oct. 27, 1998, by Ghosh et al, entitled “High Frequency Ultrasonic Cleaning of Ink Jet Printhead Cartridges”, the teachings of which are incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates to an ink jet printer and more particularly to improved cleaning system for self cleaning ink jet printhead cartridges.
BACKGROUND OF THE INVENTION
Typically, an ink jet printer has at least one printing cartridge from which droplets of ink are directed towards a receiver. Within the cartridge, the ink may be contained in a plurality of channels and energy pulses are used to cause the droplets of ink to be ejected on demand or continuously, from nozzles or orifices in a plate in an orifice structure.
In a thermal ink jet printer, the energy pulses are generally provided by a set of electrical resistors, each located in a respective one of the channels, each one of them is individually addressable by current pulses to instantaneously heat and form a droplet or bubble in the channels which contact the resistors. Operation of thermal ink jet printer is described in details in U.S. Pat. Nos. 4,849,774; 4,500,895; and 4,794,409.
On the other hand, a piezoelectric ink jet printing system includes a body of piezoelectric material defining a plurality of parallel open topped channels separated by walls. The walls have metal electrodes on opposite sides thereof to form shear mode actuators for causing droplets to expel from the channels. An orifice structure comprising at least one orifice plate defining the holes through which the ink droplets are ejected is bonded to the open end of the channels. The electrical energy pulses are applied to the parallel electrodes causing the channels to shear actuating the expulsion of droplets from the orifice plate. Operation of piezoelectric ink jet print heads is described in details in U.S. Pat. Nos. 5,598,196; 5,311,218; and 5,248,998.
Ink jet printing cartridges, whether it is of thermal or piezoelectric kind, use a variety of functional components, all of which must cooperate in a precise manner to achieve maximum efficiency. One of the most important components is an orifice plate having a plurality of orifices or nozzles therein. The nozzles are usually circular in cross section and the diameter of the nozzles may vary from 10 to 100 &mgr;m as required by the specification of the printer. Higher the resolution of the printed output, smaller is the ink droplet thereby requiring smaller diameter nozzles or orifices. Ink is ejected through these openings during printing operation. To obtain defect-free printing output, the orifice plates and all the nozzles must be kept clean and free of debris and any kind of obstructions to ink flow at all times. If the orifice plate and nozzles are not clean, many problems can occur thereby undermining the performance of the printer. As for example, paper fibers and other debris accumulated on the orifice plate surface and inside the nozzles can affect the quality of the printed images. Similarly, debris can be dried ink crust and paper dust on the orifice plate as well as in the ink channels and the nozzles can cause the printer to perform poorly.
The foregoing problems are overcome, as described in U.S. Pat. No. 5,300,958 to Burke et al, by providing “maintenance or service stations” within the main printer unit. The maintenance stations are designed such that when the printhead ink cartridge is not operating and is in a “parked” position, the cartridge is situated in the maintenance station outside the printing zone for the purpose of routine cleaning of the cartridges. The maintenance station has many components, which are designed to serve many functions. These functions include: (a) priming the printhead cartridge, (b) capping the orifice plate and nozzles (orifices) therein when the printhead is not in operation, (c) wiping contaminants from the orifice plate, (d) preventing ink from drying out in the openings of the orifice plate, and (e) providing a receptacle for discarding the cleaned debris.
To accomplish this cleaning, the U.S. Pat. No. 5,103,244 discloses a structure in which a multi-blade wiper is used. The desired cleaning is performed by dragging a printhead (cartridge) across the selected wiper blade. The wiper mechanism also includes a plurality of resilient blades each having an octagonal shape and rotatable about an axis.
Another cleaning structure disclosed in U.S. Pat. No. 5,300,958, includes a printhead wiper unit consisting of a single or dual members positioned against each other to form a capillary pathway therebetween. The cartridge includes a compartment having an opening therethrough and an absorbent member impregnated with cleaning solution.
Still another cleaning structure is disclosed in U.S. Pat. No. 5,574,485 which includes use of a high frequency ultrasonic liquid wiper wherein a cleaning nozzle is confrontingly aligned but spaced from printhead nozzles. A cleaning solution is held within the cleaning nozzle by surface tension to form a meniscus and is caused to bulge toward into contact with the printhead nozzle face and form a bridge of cleaning solution therewith. In addition to dissolving ink the cleaning solution is ultrasonically excited by a piezoelectric material immediately upstream of the cleaning nozzle to provide a high frequency energized liquid wiper to facilitate cleaning of clogged nozzles without having physical contact with the printhead nozzle face.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide improved cleaning of ink jet printhead cartridges.
It is another object of the present invention to provide a more efficient printhead cartridge cleaning system which permits a controlled dislodging of debris accumulated in the orifices of the orifice structure, discarding the debris without contaminating and damaging the cartridges and thereby cleaning the printhead cartridges efficiently.
It is another object of the present invention to provide an apparatus for cleaning an ink jet printhead cartridge, which is compact, robust and efficient.
It is yet another object of the present invention to provide a cleaning apparatus, which does not abrade or damage the ink jet cartridges.
These objects are achieved in an ink jet cartridge for an ink jet printer comprising:
(a) an orifice plate having a plurality of orifices for ink ejection;
(b) a cartridge for receiving a reservoir having ink which is adapted to be ejected through the orifices, the cartridge including a cleaning manifold having a plurality of inlet and outlet passages through which cleaning fluid can be applied so that such fluid is directed across the surface of the orifice plate; and
(c) a plurality of actuable ultrasonic transducers disposed in operative relationship with respect to the orifice plate and which when actuated produce ultrasonic sound waves which impinge upon the orifice plate to loosen debris whereby the cleaning fluid directed across the surface of the orifice plate carries away such loosened debris.
Advantages of the invention include:
Overcoming many of the disadvantages of the existing technology, such as damage of the orifice plates due to wear, abrasion and distortion;
Providing a manifold structure in the cartridge itself which permits an effective way of providing cleaning fluid to clean the orifice plate;
Embedding actuable ultrasonic transducers in the orifice plate to provide an effective way of cleaning the orifice plate;
Cost-effective electroni

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self cleaning ink jet printhead cartridges does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self cleaning ink jet printhead cartridges, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self cleaning ink jet printhead cartridges will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2503359

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.