Gas separation: processes – With timing of operation
Reexamination Certificate
2000-02-29
2002-10-15
Chiesa, Richard L. (Department: 1724)
Gas separation: processes
With timing of operation
C055S385100, C095S073000, C095S076000, C095S078000, C096S025000, C096S026000, C096S031000, C096S051000, C096S063000, C096S074000, C096S097000, C361S226000
Reexamination Certificate
active
06464754
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention pertains to air purification and, more particularly, to an ionizer system and process to remove dust and noxious gases.
Over the years, many types of air purifiers and equipment have been provided to purify and dedust air. Ionizers are particularly helpful. An ionizer is a device which emits electrically charged ions which clean impurities from the air and provide a feeling of well being to the user. Where possible, the ionizer should accomplish its purpose without creating an amount of ozone which is harmful to people, plants, poultry and other animals.
Some conventional ionizers have sharp needles or pointed wires which emit electrons (ions) produced by high voltage pulses to ionize the air. The sharp needles and pointed wires can puncture and severely cut poultry and other animals, as well as workers and others who many contact such conventional ionizers.
Most conventional ionizers are or should be cleaned on a regular basis to remove accumulation, build up, caking and covering of ionizer needles and/or filters with ionized particles of dust or other debris. Such accumulation has a tendency to hamper the operation of the ionizer, decrease the ionizer's effectiveness and efficiency, and can clog the ionizer. The situation is particularly aggravated and grievous for industrial uses of ionizers, such as for poultry houses and hog confinements. Conventional cleaning of ionizers is tedious, time-consuming, messy and labor intensive. It can also interfere with the operation of the ionizer since the ionizer may need to be shut off during cleaning.
Workers and livestock, such as poultry and pigs, must endure biohazardous conditions on a daily basis. In poultry (fowl) houses and hog confinements (swine houses), for example, chickens, turkeys, ducks, ostriches, and pigs, secrete waste matter which produce noxious gases comprising volatile fumes of ammonia and methane. Poultry also produce great amounts of dust with their feathers. Swine (pigs and hogs) which like to wallow in mud, also produce great amounts of dust when they shake off mud. The biohazardous conditions in the poultry houses create an unsafe atmosphere and unpleasant environment for the birds, swine, livestock, and hog confinements, farmers and workers.
Some poultry houses and hog confinements have an air intake and exhaust system to extract gas and dust into the outside atmosphere. The exhaust fans typically have sensors that trigger the fans on and off depending upon the level of ammonia and dust in the poultry house or hog confinements. Even with conventional exhaust fans running at 100% capacity, the farmers and workers often wear protective masks in poultry houses and hog confinements to attempt to shield the gases and dust from their lungs.
The emission and concentration of noxious gases and dust in conventional poultry houses adversely affect the health, growth rate, and well-being of chickens, turkeys, and other poultry. Excessive amounts of noxious gases and dust can cause poultry to develop eye diseases. It can also cause the poultry to become sick and lose their appetite. As a result, many of the chickens, turkeys and other poultry stop eating and drinking, their growth rate becomes stunted, and their flesh may no longer be tender, firm, and tasty. Unsafe levels of these harmful gases and dust can also kill many of the chickens, turkeys and other poultry.
In order to keep the poultry houses warm, poultry houses are often equipped with heaters, such as butane heaters. During the first three weeks of growth for a new batch of chickens, the poultry house is typically kept at a temperature of: 88° F. for the first week, 85° F. for the second week, and 80° F. for the third week. For the remainder of the seven week growing cycle, the poultry houses are kept at a comfortable level. With the exhaust fans running at a 100% capacity in an attempt to remove some of the noxious gases and dust, the heaters often continuously operate in conventional poultry houses to heat the house to the proper temperature. Continuous operation of the fans and heaters in conventional poultry houses consumes an enormous amount of energy and is very expensive. These expenses are usually ultimately passed on to the consumer.
Many farmers seek improved ways to clean the environment in and around poultry houses. The U.S. Environmental Protection Agency and state environmental agencies are considering implementing higher standards for the quality of air exiting the poultry houses, hog confinements and other biohazardous areas.
It is, therefore, desirable to provide an improved air purification system and process which overcomes most, if not all, of the preceding problems.
SUMMARY OF THE INVENTION
An improved air purification system and process are provided which decrease the concentration of dust and noxious gases to safer levels in poultry houses, swine houses (hog confinements), paper mills, industrial facilities, factories, and dwellings. Advantageously, the efficient air purification system and process help purify the air to provide a healthier and more comfortable environment for people, plants, poultry, swine and other animals. The convenient air purification system and process are also economical, easy to use, simple to install, durable, and effective. Desirably, the user friendly air purification system and process: decrease energy consumption, improves the health and growth rate of poultry and swine, and enhances the safety and well being of farmers, workers and livestock. As a result, the novel air purification system and process provide for: cleaner air for workers and livestock, less pollution, a decrease of energy and power to exhaust the air, reduction in butane and other sources of energy to heat poultry houses, swine houses (hog confinements), and cleaner air emissions.
In the special air purification system and process, overlapping flow patterns of ions are emitted in a room with a set of modules so that the ions can ionize airborne dust and/or noxious gases in the room. Preferably, the air and ions in the room are circulated with a fan system which is spaced from the modules. For poultry houses, swine houses (hog confinements), and other facilities, the air in the room can be heated with at least one heater which is spaced from the fan. Influent air can be drawn into the room and purified effluent air can be discharged out of the room. In the preferred form, the modules are maintained in a spaced apart relationship. Preferably, the modules comprise ionizers and each of the ionizers have an array of ion-emitting needles. The ionizers can have a needle guard which prevents the sharp needles and points of the ion emitters from cutting, puncturing, or otherwise harming poultry, swine, and other animals, as well as from injuring farmers and workers who may contact the ionizers in the poultry houses, swine houses (hog confinements), or other facilities.
In the preferred form, the modules comprise self-cleaning ionizers. Each of the self-cleaning ionizers have an ion-emitting assembly comprising ion-emitters for emitting negatively charged ions to ionize airborne particulates of dust and noxious gases in an area such as a poultry house, swine house, grain elevator, cylo, industrial facility, office, room, residential dwelling, etc. The ion emitters comprise a set series or array of ion-emitting needles with pointed tips that emit the negatively charged ions. The ion-emitting assembly can include a circuit board secured to and supporting the ion-emitting needles. An electric circuit is mounted on the circuit board to cyclically apply a negative potential charge to the ion-emitting needles at a sufficiently high voltage to ionize the particulates of dust and noxious gases without substantially generating ozone. Electrical wires are connected to the electrical circuit and extend from the circuit board to connect the self-cleaning ionizer to an electrical box mounted on the ceiling or wall.
The self-cleaning ionizer also includes a housing assembly for at least partially enclosing and supp
Chiesa Richard L.
Kairos, L.L.C.
Tolpin Thomas W.
Welsh & Katz Ltd.
LandOfFree
Self-cleaning air purification system and process does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Self-cleaning air purification system and process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-cleaning air purification system and process will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2928186