Self assembling monolayer compositions

Stock material or miscellaneous articles – Composite – Of polycarbonate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S423000, C428S333000, C428S338000, C428S450000, C428S457000, C428S470000, C428S472000, C428S472100, C623S023570, C623S011110

Reexamination Certificate

active

06689473

ABSTRACT:

TECHNICAL FIELD
In one aspect, the invention relates to methods and materials for passivating the surfaces of implantable devices such as sensors. In another aspect, the present invention relates to self-assembling monolayers, and in particular to the use of such compositions as surface coatings for devices such as implantable medical devices. In yet another aspect, the invention relates to the use of photochemically reactive groups for surface treatment.
BACKGROUND OF THE INVENTION
Materials used to fabricate implantable medical devices, such as implantable biosensors, are generally chosen for their bulk physical properties rather than specific surface characteristics. As a result, while the device may have desirable properties such as strength and elasticity, its surface is typically not optimized for interactions with bodily fluids. Commercially available methods and materials for the surface modification of such devices can be used, for instance, to decrease protein adsorption, increase wettability and lubricity, and decrease thrombus formation and bacterial colonization. However, conventional coating techniques and reagents are frequently not well designed for applications which require ultra-thin coatings.
Such “ultra-thin” applications include those surfaces that provide either small pore sizes or structural features of less than about one micron in size. For instance, biosensors based on solid-phase receptor-ligand assays, such as dot microarray systems, are based on the ability of macromolecules to orient themselves in a desired manner when associated with a substrate surface such as glass. In principal, the properties of the surface itself (e.g., surface charge and/or dipole moment) should be complementary to those of the macromolecule. Experience indicates, however, that most binding proteins are not sufficiently compatible with glass or other surfaces used for the fabrication of biosensors.
Binding molecules, such as coupling molecules or moieties (e.g., N-oxysuccinimide, epoxy groups) or biomolecules (such as biotin/avidin, or biological polymers) can, however, be chemically bonded to surfaces via chemical spacers that hold the binding molecules away from what might otherwise be a harsh environment at the substrate surfaces. In one such embodiment, a hydrophilic surface environment is provided in which protein is attached to intermediate and/or end sites of a bound soluble polymer. It has been suggested that this approach may provide enhanced protein mobility and hence greater opportunities for favorable interaction of the bound capture moiety with its complementary partner. The greatest potential for improving the effectiveness of biochemically-modified surfaces appears to reside in the engineering of surfaces which can immobilize proteins via reactive spacer arms containing specific-binding ligands. Ideally, the base material should stabilize the binding protein and should minimize non-specific interactions.
Various attempts have been made to provide passivated, biomolecule-compatible synthetic surfaces. These attempts have included the design and production of improved plastics, as well as the use of the thin-film coatings of plastic, silica, semiconductor, and metal surfaces. Significant progress on the latter approach has been reported from several academic, government, and industrial laboratories. Such studies have tended to rely upon the adsorption and thermochemical bonding of preformed hydrophilic and surfactant polymers, in situ polymerization/crosslinking to form hydrophilic but insoluble polymeric films, or photochemical bonding of preformed hydrophilic and surfactant polymers.
None of these approaches, however, seem to have achieved an optimal combination of such properties as: 1) complete and uniform surface coverage with an ultrathin film, 2) a hydrophilic surface having minimum nonspecific attraction for biomolecules and cells, 3) sufficient stability for use as the surface of an implantable medical surface, 4) broad applicability to various plastic and inorganic sensor and medical device materials, and/or 5) ease and reproducibility of the coating process. Moreover, the passivated surface should be easily formed by conventional manufacturing processes and be resistant to those conventional sterilization techniques that implants undergo before surgical implantation.
On a separate subject, self-assembled monolayer (“SAM”) technology has been used to generate monomolecular films of biological and non-biological (e.g., synthetic polymeric) molecules on a variety of substrates. The formation of such monolayer systems is versatile and can provide a method for the in vitro development of bio-surfaces which are able to mimic naturally occurring molecular recognition processes. SAMs also permit reliable control over the packing density and the environment of an immobilized recognition center or multiple center, at a substrate surface.
Generally, SAMs remain upon a given surface by virtue of various noncovalent interactions between the two. Applicants are aware of at least one example, however, in which polymer-supported lipid bilayers were attached to a substrate that had been functionalized with benzophenone. See Shen W. et al., Biomacromolecules 2:70-79 (December, 2000). As an aside, and with regard to the attachment of proteins using benzophonene derivatized surfaces, see also Dorman and Prestwich, TIBTECH 18:64 (2000) which reviews the use of benzophenone groups on proteins and on surfaces for biomolecule immobilization.
On yet another subject, the assignee of the present invention has previously described a variety of applications for the use of photochemistry, and in particular, photoreactive groups, e.g., for attaching polymers and other molecules to support surfaces. See, for instance, U.S. Pat. Nos. 4,722,906, 4,826,759, 4,973,493, 4,979,959, 5,002,582, 5,073,484, 5,217,492, 5,258,041, 5,263,992, 5,414,075, 5,512,329, 5,512,474, 5,563,056, 5,637,460, 5,654,162, 5,707,818, 5,714,360, 5,741,551, 5,744,515, 5,783,502, 5,858,653, 5,942,555, 5,981,298, 6,007,833, 6,020,147, 6,077,698, 6,090,995, 6,121,027, 6,156,345, 6,214,901 and published PCT Application Nos. US82/06148, US87/01018, US87/02675, US88/04487, US88/04491, US89/02914, US90/05028, US90/06554, US93/01248, US93/10523, US94/12659, US95/16333, US96/07695, US96/08797, US96/17645, US97/05344, US98/16605, US98/20140, US99/03862, US99/05244, US99/05245, US99/08310, US99/12533, US99/21247, US00/00535, US00/01944, US00/33643 and unpublished PCT Application No. US01/40255.
What is clearly needed are methods and reagents for providing improved surface coatings, including those having further improved combination of the various desirable properties listed above.
SUMMARY OF THE INVENTION
The present invention provides a surface coating composition for providing a surfactant monolayer, such as self-assembling monolayer (“SAM”), in stable form, on a material surface or at a suitable interface. The invention further provides a method of preparing such a composition and a method of using such a composition to coat a surface, such as the surface of an implantable medical device, in order to provide the surface with desirable properties. In alternative embodiments, the invention provides material surfaces coated with, or adapted (e.g., primed) to be coated with, such a composition, and articles fabricated from such materials, as well as methods of making and using such material surfaces and resultant articles.
The term “self assembling monolayer”, as used herein, will generally refer to any suitable composition, typically surfactant composition, sufficient to form a substantial monolayer upon a particular surface under the conditions of use. The surfactant can itself be of a single type, or domain, but is preferably of a type that includes two (“diblock”), three (“tri-block”) or more discrete domains of distinct polarities that correspond with the surface and carrier solvent, respectively. By “substantially monolayer” it is meant that the molecules can form a substantially complete layer covering the surface

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self assembling monolayer compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self assembling monolayer compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self assembling monolayer compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3333616

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.