Selectively tuned ultraviolet optical filters and methods of...

Optical: systems and elements – Having significant infrared or ultraviolet property – Having ultraviolet absorbing or shielding property

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S360000, C359S308000, C359S309000, C359S586000

Reexamination Certificate

active

06587264

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to improved cost-effective ultraviolet optical filtering devices. More particularly, the present invention relates to selectively tuned ultraviolet optical filters useful in mercury vapor lamp based UV water purification systems.
BACKGROUND OF THE INVENTION
Purified water is essential not only for drinking purposes, but also for numerous other applications such as, for example, drug and food manufacturing, semiconductor processing, critical cleaning applications, heat exchanger coolant use, purification of swimming pool water, etc.
Of particular concern in the water purification industry is that of providing purified drinking water to third world countries. Significant challenges continue to exist in this area due to the need for a high degree of purification and utmost reliability required to prevent water-borne diseases (cholera, typhoid, hepatitis, etc.). In addition, such water purification treatment processes must have the capacity to produce high volumes of purified water at the lowest possible cost.
Chemical, biological and physical treatment processes are well-known and are capable of providing water of varying degrees of purity. One popular process though is the exposure of germ-laden water to the germicidal wavelength of an ultraviolet source. Exposing flowing water to the ultraviolet germicidal wavelengths of 200-300 nm alters and damages a bacteria's DNA, thereby preventing its reproduction. DNA absorbs ultraviolet light strongly in the ultraviolet spectrum centered at 260 nm. Thus, the typical dominant 254 nm emission of a mercury vapor lamp has been employed for this purpose.
The U.S. Public Health Service requires that ultraviolet water purification equipment have a minimum 254 nm ultraviolet dosage of 16,000 micro-watt-seconds per square centimeter. In order to insure that this minimum criteria is satisfied, an ultraviolet mercury lamp is often monitored with an optically filtered silicon photosensor (which directly measures the 254 nm emission). If the silicon photosensor measures a low 254 nm emission, a warning is activated to replace the substandard ultraviolet lamp. Determining when an ultraviolet mercury lamp has aged to the point where its germicidal effectiveness is diminished is critical.
Some existing expensive UV water purification systems are in use which employ ultraviolet enhanced photodiodes fitted with standard optical bandpass filters to monitor the life of the mercury lamp. These optical bandpass filters define the performance of the optical system by selecting the critical 254 nm emission, while optically blocking the remaining full UV/VIS/IR spectral region (200 nm to 1200 nm). Although successful in their application, such standard optical filters are very expensive, are limited in their 254 nm performance, and have substandard durability which limits their longevity, field lifetime and versatility. Further, these optical bandpass filters have poor resistance to environmental exposure (e.g. moisture and temperature) and, thus, need to be very carefully hermetically sealed within the housing of the photosensor. Thus, such optical filters are not suitable in applications, such as water purification in third world countries, which require utmost reliability at the lowest possible cost.
Presently available optical filters used in water purification systems are expensive standard narrow bandpass filters centered at 254 nm. The two general types are: MDM (Metal-Dielectric-Metal) filters and Solar Blind Filters.
MDM filters consist of transparent quartz (or similar) substrates optically coated with alternating thin films of a soft dielectric (e.g. cryolite) and metallic aluminum. Disadvantages of MDM filters include: poor resistance to elevated temperature, extreme fragility (soft, easily scratched optical coatings limits their use) which requires the coatings to be protected with additional quartz substrates, thickness and size constraints and extreme cost (approximately $88 per filter). Shown in
FIG. 4
is the spectral behavior of a typical 254 nm MDM bandpass filter. Solar Blind Filters are multi-element devices manufactured with absorptive glasses and optical crystals (e.g. nickel sulfate). Such filters are very sensitive to moisture and heat, are very thick (5-6 mm) and cost prohibitive (approximately $250 per filter). Shown in
FIG. 5
is the spectral behavior of a standard Solar Blind Filter. Both MDM and Solar Blind Filters are limited in their application because they must be mounted and sealed within a photodiode housing. Because of manufacturability, the filter sizes must be large and cover the full clear aperture of the photodiode housing (see FIG.
3
).
It would, thus, be desirable to provide improved optical filters for ultraviolet water purification systems that are capable of producing large volumes of highly purified water with utmost reliability and at the lowest possible cost.
SUMMARY OF THE INVENTION
The present invention provides an improved method and apparatus for the ultraviolet purification of liquids, particularly water, at a substantially lower cost and greater reliability than currently available systems. More particularly, the present invention provides unique ultraviolet optical filters selectively tuned to eliminate the discrete non-germicidal wavelength polychromatic background emissions from mercury lamps.
In addition to the typical 254 nm emission of a mercury lamp, mercury lamps also have polychromatic background emissions at other discrete wavelengths, e.g., 313 nm, 365 nm, 405 nm, 436 nm, 546 nm, 579 nm, 1015 nm and 1140 nm (see FIG.
2
). This is a unique characteristic of these types of lamps. These wavelengths do not contribute to water purification, but do interfere with the accurate optical monitoring of the mercury lamp life using a silicon photodiode. To monitor the critical 254 nm mercury lamp emission, these wavelengths must be blocked. Whereas standard expensive MDM or Solar Blind 254 nm bandpass filters fully block the entire UV/VIS/IR spectral regions, it is the unique and novel feature of this invention to block only these discrete background wavelengths. In this way, the optical filter cost is dramatically reduced and the reliability improved.
The optical filters of the present invention provide a number of advantages over prior optical filters including, for example, very low cost (less than $2 as opposed to $88 for MDM filters and $250 for Solar Blind Filters), extreme durability to high temperatures and moisture, superior scratch resistance, small sizes, improved optical performance, extended physical longevity, high imaging quality of transmitted radiation, and improved throughput of the transmitted critical 254 nm wavelength. Further, preferred filters of the invention do not require any sealing from the ambient atmosphere and do not degrade over time with exposure to ultraviolet irradiation.
The optical filters of the present invention may be fabricated by conventional optical coating technologies including, for example, physical vapor deposition (thermal evaporation employing electron-beam technology), ion assisted deposition, ion beam or magnetron sputtering, chemical vapor deposition or reactive ion plating.
The design and dimensions of the optical filters in accordance with the present invention makes them particularly suitable for use in water purification systems that employ ultraviolet enhanced photodiodes fitted with optical filters. In one preferred embodiment, the optical filters of the present invention comprise a substrate having optical coatings thereon. Such optical filters may suitably form the external window of the photodiode. In a particularly preferred embodiment, optical coatings are directly deposited upon the photodiode surface itself, which provides particularly substantial cost savings (FIG.
1
).
In accordance with one embodiment of the present invention, the optical filter comprises a substrate with optical coatings deposited on one or both surfaces of the substrate. The substrate may be selected from a wid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selectively tuned ultraviolet optical filters and methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selectively tuned ultraviolet optical filters and methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selectively tuned ultraviolet optical filters and methods of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3082441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.