Selectively activated shape memory device

Electric heating – Heating devices – Combined with diverse-type art device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S548000, C604S058000, C604S095030, C604S028000

Reexamination Certificate

active

06323459

ABSTRACT:

BACKGROUND
1. Field of the Invention
This application relates to shape memory devices, and more particularly to a spatially addressable shape memory device.
2. Description of Related Art
Materials which change their shape in response to external physical parameters are known and appreciated in many areas of technology. Shape memory alloys (hereafter “SMA”) is a material that undergoes a micro-structural transformation from a martensitic phase at a low temperature to an austenitic phase at a high temperature. In the martensitic phase an SMA
10
exhibits low stiffness and may be readily deformed up to 8% total strain in any direction without adversely affecting its memory properties. When heated to an activation temperature, the SMA becomes two to three times stiffer as it approaches its austenitic state. At the higher temperature, the SMA attempts to reorganize itself on the atomic level to accommodate a previously imprinted or “memorized” shape. When the SMA cools it returns to its soft martensitic state.
A shape may be trained into an SMA by heating it well beyond its activation temperature to its annealing temperature and holding it there for a period of time. For a TiNi SMA system, the annealing program consists of geometrically constraining the specimen, and heating it to approximately 520 degrees C for fifteen minutes. Usually, functionally is enhanced by leaving in a certain amount of cold working by abreviating the anneal cycle.
U.S. Pat. No.
4
,
543
,
090
(hereafter the “'090 Patent”) discloses a catheter with two distinct SMA actuators. One actuator assumes a predetermined shape when heated to a predetermined temperature. The two actuators are coupled to each other with a coupling device so that when one of the actuator moves to its predetermined shape a force is applied to move the second actuator in the direction of the first actuator. Each actuator is only able to move to a single predetermined shape. The actuators do not include a heating device with at least two micro-fabricated address lines. The limitations of the '090 Patent are also found in U.S. Pat. No. 4,601,705.
It would be desirable to provide a shape memory alloy device that has a sheet of shape memory alloy where a section of the sheet can be selectably activated.
SUMMARY
An object of the present invention is to provide a shape memory device that is selectably activated.
Another object of the present invention is to provide a shape memory device that is activated to more than a single predetermined shape.
Still another object of the present invention is to provide a shape memory device with a shape memory alloy and a heating device that includes at least one micro-fabricated conductive path.
Another object of the present invention is to provide a shape memory device where an activation of at least a portion of the shape memory device provides a variable Young's modulus of at least a portion of the shape memory device.
Yet another object of the present invention is to provide a medical device that includes a shape memory alloy actuator that is selectably activated to a selected site of the actuator.
Still a further object of the present invention is to provide a medical device that includes a sheet of shape memory alloy that is activated at a selected site of the sheet and the sheet is coupled to a catheter body.
Another object of the present invention is to provide a medical device with a single shape memory alloy actuator.
A further object of the present invention is to provide a shape memory device with a plurality of independently addressable actuators.
Yet a further object of the present invention is to provide a thermally activated apparatus that includes a temperature-activated actuator configured to move to a plurality of different predetermined shapes.
These and other objects of the invention are achieved in a shape memory device that that includes a shape memory alloy member configured to have at least a portion of the shape memory alloy member be selectively activated. A heating device is coupled to the member and configured to provide heat to a selected section of the member and activate at least a portion of the selected section.
In one embodiment of the invention, a shape memory device includes a sheet of a shape memory alloy. The sheet is selectably activated to a selected site of the sheet and includes at least two independently actuateable elongated members. A heating device is positioned adjacent to or on a surface of the sheet to provide heat to a selected section of the sheet and create a bending force within at least a portion of the selected section. The heating device includes at least one micro-fabricated conductive path.
In another embodiment of the invention, a medical device includes an elongated device at least partially made of a shape memory alloy member configured to be selectably activated at a selected site of the member. A heating device is coupled to the member and configured to provide heat to a selected section of the member and activate at least a portion of the selected section.
In yet another embodiment of the invention, a catheter is provided with an elongated device that includes a distal end and proximal end. A shape memory alloy member is configured to be selectably activated at a selected site of the member. The member is coupled to the elongated device. A heating device is coupled to the member and configured to provide heat to a selected section of the member and activate at least a portion of the selected section.
In still another embodiment of the invention, a shape memory device includes a shape memory alloy member that is configured to be selectably activated at a selected site of the member. The member has at least two independently activated elongated portions. A heating device is coupled to the member and configured to provide heat to a selected section of the member and activate at least a portion of the selected section.
In another embodiment of the invention, a thermally activated apparatus includes a temperature-activated actuator. The actuator is configured to move to a plurality of predetermined shapes. A heating device is configured to deliver thermal energy to at least a selected portion of the actuator.
In still a further embodiment of the invention, a medical device includes an elongated member with a proximal portion and a distal portion configured to be inserted into a body. An electrically-activated actuator is coupled to the elongated member. The actuator is configured to move to a plurality of predetermined shapes. An electrical energy source is coupled to the electrically-activated actuator and configured to deliver energy to at least a selected portion of the actuator.
In yet another embodiment of the invention, a thermally activated apparatus includes an electrically-activated actuator coupled to an elongated member. The actuator is configured to move to a plurality of predetermined shapes. An electrical energy source is coupled to the electrically-activated actuator and configured to deliver energy to at least a selected portion of the actuator.
In various embodiments of the invention, an activation of at least a portion of the selected section of the actuator provides a variable Young's modulus of at least a portion of the actuator The heating device can include a micro-fabricated conductive path. The actuator can be made of a continuous sheet of a shape memory alloy, a sheet of a shape memory alloy which includes perforations, or a plurality of interconnected separate shape memory alloy actuators. The actuator can have a three-dimensional geometry, a wire-like geometry, a tube-like structure and the like. A micro-fabricated circuit, a micro-fabricated sensor, or a micro-fabricated transducer can be coupled to the heating device.
The medical device of the present invention can be an endoscope, a cannula, an introducer, a laparoscope, a trocar and a catheter. The operation mode of the shape memory alloy of the medical device is achieved by, (i) one-way shape memory effect acting on an elastic body such as a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selectively activated shape memory device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selectively activated shape memory device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selectively activated shape memory device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2579136

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.