Selective latent semantic indexing method for information...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

07630992

ABSTRACT:
A term-by-document (or part-by-collection) matrix can be used to index documents (or collections) for information retrieval applications. Reducing the rank of the indexing matrix can further reduce the complexity of information retrieval. A method for index matrix rank reduction can involve computing a singular value decomposition and then retaining singular values based on the singular values corresponding to singular values of multiple topics. The expected singular values corresponding to a topic can be determined using the roots of a specially formed characteristic polynomial. The coefficients of the special characteristic polynomial can be based on computing the determinants of a Gram matrix of term (or part) probabilities, a method of recursion, or a method of recursion further weighted by the probability of document (or collection) lengths.

REFERENCES:
patent: 4839853 (1989-06-01), Deerwester et al.
patent: 6122628 (2000-09-01), Castelli et al.
patent: 6678690 (2004-01-01), Kobayashi et al.
patent: 6922715 (2005-07-01), Kobayashi et al.
patent: 6965898 (2005-11-01), Aono et al.
patent: 6965900 (2005-11-01), Srinivasa et al.
patent: 7024400 (2006-04-01), Tokuda et al.
patent: 2002/0013801 (2002-01-01), Kobayashi et al.
patent: 2003/0159106 (2003-08-01), Aono et al.
patent: 2004/0220944 (2004-11-01), Behrens et al.
Richards et al., “Matrices, Vector Spaces, and Information Retrieval”, Dec. 13, 2002, pp. 1-16.
Berry et al., “Matrices, Vector Spaces, and Information Retrieval”, Jun. 1999, Society for Industrial and Applied Mathematics, vol. 41, pp. 335-362.
Corless et al., “Singular Value Decomposition for Polynomial Systems”, 1995, ACM Press, pp. 195-207.
Potts et al., “Semantics of Exact Real Arithmetic”, Jul. 1997, IEEE Computer Society, p. 248.
Brezin et al., “Characteristic Polynomials of Random Matrices”, 2000, Communications in Mathematical Physics, vol. 214, Issue 1, pp. 111-135.
C. H. Papadimitriou, P. Raghavan, H. Tamaki, S. Vempala, Latent semantic indexing: a probabilistic analysis, J. Comput. System Sci. 61 (2) (2000) 217-235.
S. T. Dumais, G. W. Fumas, T. K. Landauer, S. Deerwester, R. Harshman, Using latent semantic analysis to improve access to textual information, in: Proceedings of ACM CHI'88 Conference on Human Factors in Computing Systems, Innovative Information Access, 1988, pp. 281-285.
G. W. Stewart, On the early history of the singular value decomposition, SIAM Rev. 35 (4) (1993) 551-566.
R. Homayouni, K. Heinrich, L. Wei, M. W. Berry, Gene clustering by latent semantic indexing of MEDLINE abstracts, Bioinformatics 21 (1) (2005) 104-115.
C. H. Q. Ding, A similarity-based probability model for latent semantic indexing, in: SIGIR, 1999, pp. 58-65.
Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, J. Saia, Spectral analysis of data, in: STOC, 2001, pp. 619-626.
J. K. Seppanen, E. Bingham, H. Mannila, A simple algorithm for topic identification in 0-1 data, in: PKDD, 2003, pp. 423-434.
T. Hofmann, Probabilistic latent semantic indexing, in: SIGIR, 1999, pp. 50-57.
A. Telenti, Keynote speech, in: The 3rd International AIDS Society Conference on HIV Pathogenesis and Treatment, 2005.
G. Sherlock, Analysis of large-scale gene expression data, Briefings in Bioinformatics 2 (4) (2001) 350-362.
O. Alter, P. O. Brown, D. Botstein, Singular value decomposition for genome-wide expression data processing and modeling, Proc Natl Acad Sci U S A 97 (18) (2000) 10101-10106.
M. E. Wall, P. A. Dyck, T. S. Brettin, SVDMAN-singular value decomposition analysis of microarray data, Bioinformatics 17 (6) (2001) 566-568.
S.-K. Ng, Z. Zhu, Y.-S. Ong, Whole-genome functional classification of genes by latent semantic analysis on microarray data, in: Y.-P. P. Chen (Ed.), Second Asia-Pacific Bioinformatics Conference (APBC 2004), Jan. 18-22, 2004, Dunedin, New Zealand, vol. 29 of CRPIT, Australian Computer Society, 2004, pp. 123-129.
D. Higham, G. Kalna, J. K. Vass, Analysis of the singular value decomposition as a tool for processing microarray expression data, Tech. Rep. 01-2005, University of Strathclyde Mathematics (2005).
O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, R. B. Altman, Missing value estimation methods for DNA microarrays, Bioinformatics 17 (6) (2001) 520-525, evaluation Studies.
A. M. Jeffrey, X. Xia, I. K. Craig, When to initiate HIV therapy: a control theoretic approach, IEEE Trans Biomed Eng 50 (11) (2003) 1213-1220, evaluation Studies.
M. L. Teodoro, G. N. Phillips, L. E. Kavraki, A dimensionality reduction approach to modeling protein flexibility, in: RECOMB '02: Proceedings of the sixth annual international conference on Computational biology, ACM Press, New York, NY, USA, 2002, pp. 299-308.
M. L. Teodoro, G. N. Phillips, L. E. Kavraki, Singular value decomposition of protein conformational motions: Application to HIV-1 protease (Aug. 30, 2000).
S. Hui, FlexSADRA: Flexible structural alignment using a dimensionality reduction approach, University of Waterloo, Ontario, Canada, 2005.
P. N. Nyambi, A. Nadas, H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, S. Zolla-Pazner, Immunoreactivity of intact virions of human immunodeficiency virus type 1 (HIV-1) reveals the existence of fewer HIV-1 immunotypes than genotypes, J Virol 74 (22) (2000) 10670-10680.
D. Ghosh, Singular value decomposition regression models for classification of tumors from microarray experiments, in: Pacific Symposium on Biocomputing, 2002, pp. 18-29.
Y. Fu, T. Bauer, J. Mostafa, M. Palakal, S. Mukhopadhyay, Concept extraction and association from cancer literature, in: R. H. L. Chiang, E.-P. Lim (Eds.), Fourth ACM CIKM International Workshop on Web Information and Data Management (WIDM 2002), SAIC Headquaters, McLean, Virginia, USA, Nov. 8, 2002, ACM; 2002; pp. 100-103.
D. Horn, I. Axel, Novel clustering algorithm for microarray expression data in a truncated SVD space, Bioinformatics 19 (9) (2003) 1110-1115.
E. Huang, S. H. Cheng, H. Dressman, J. Pittman, M. H. Tsou, C. F. Horng, A. Bild, E. S. Iversen, M. Liao, C. M. Chen, M.West, J. R. Nevins, A. T. Huang, Gene expression predictors of breast cancer outcomes, Lancet 361 (9369) (2003) 1590-1596.
T. O. Nielsen, R. B.West, S. C. Linn, O. Alter,M. A. Knowling, J. X. O'Connell, S. Zhu, M. Fero, G. Sherlock, J. R. Pollack, P. O. Brown, D. Botstein, M. van de Rijn, Molecular characterisation of soft tissue tumours: a gene expression study, Lancet 359 (9314) (2002) 1301-1307.
M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A. Olson, J. R. Marks, J. R. Nevins, Predicting the clinical status of human breast cancer by using gene expression profiles, Proc Natl Acad Sci U S A 98 (20) (2001) 11462-11467.
B. Jarzab, M. Wiench, K. Fujarewicz, K. Simek, M. Jarzab, M. Oczko-Wojciechowska, J. Wloch, A. Czarniecka, E. Chmielik, D. Lange, A. Pawlaczek, S. Szpak, E. Gubala, A. Swierniak, Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications, Cancer Res 65 (4) (2005) 1587-1597.
Bekas et al., “Polynomial filtered Lanczos iterations with applications in Density Functional Theory,” Computer Science and Engineering Dept. University of Minnesota, Jul. 15, 2005, pp. 1-24.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selective latent semantic indexing method for information... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selective latent semantic indexing method for information..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selective latent semantic indexing method for information... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4084380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.