Selective flush of shared and other pipeline stages in a...

Electrical computers and digital processing systems: processing – Dynamic instruction dependency checking – monitoring or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C712S228000

Reexamination Certificate

active

06694425

ABSTRACT:

TECHNICAL FIELD
The present invention relates in general to an improved data processing system and in particular to an improved system and method for switching threads of execution when execution of a thread is stalled in the dispatch stage of a multithread pipelined processor and flushing the stalled thread from earlier stages of pipeline.
BACKGROUND OF THE INVENTION
From the standpoint of the computer's hardware, most systems operate in fundamentally the same manner. Computer processors actually perform very simple operations quickly, such as arithmetic, logical comparisons, and movement of data from one location to another. What is perceived by the user as a new or improved capability of a computer system, however, may actually be the machine performing the same simple operations at very high speeds. Continuing improvements to computer systems require that these processor systems be made ever faster.
One measurement of the overall speed of a computer system, also called the throughput, is measured as the number of operations performed per unit of time. Conceptually, the simplest of all possible improvements to system speed is to increase the clock speeds of the various components, particularly the clock speed of the processor. So that if everything runs twice as fast but otherwise works in exactly the same manner, the system will perform a given task in half the time. Computer processors which were constructed from discrete components years ago performed significantly faster by shrinking the size and reducing the number of components; eventually the entire processor was packaged as an integrated circuit on a single chip. The reduced size made it possible to increase the clock speed of the processor, and accordingly increase system speed.
Despite the enormous improvement in speed obtained from integrated circuitry, the demand for ever faster computer systems still exists. Hardware designers have been able to obtain still further improvements in speed by greater integration, by further reducing the size of the circuits, and by other techniques. Designers, however, think that physical size reductions cannot continue indefinitely and there are limits to continually increasing processor clock speeds. Attention has therefore been directed to other approaches for further improvements in overall throughput of the computer system.
Without changing the clock speed, it is still possible to improve system speed by using multiple processors. The modest cost of individual processors packaged on integrated circuit chips has made this practical. The use of slave processors considerably improves system speed by off-loading work from the central processing unit (CPU) to the slave processor. For instance, slave processors routinely execute repetitive and single special purpose programs, such as input/output device communications and control. It is also possible for multiple CPUs to be placed in a single computer system, typically a host-based system which serves multiple users simultaneously. Each of the different CPUs can separately execute a different task on behalf of a different user, thus increasing the overall speed of the system to execute multiple tasks simultaneously.
Coordinating the execution and delivery of results of various functions among multiple CPUs is a tricky business; not so much for slave I/O processors because their functions are pre-defined and limited but it is much more difficult to coordinate functions for multiple CPUs executing general purpose application programs. System designers often do not know the details of the programs in advance. Most application programs follow a single path or flow of steps performed by the processor. While it is sometimes possible to break up this single path into multiple parallel paths, a universal application for doing so is still being researched. Generally, breaking a lengthy task into smaller tasks for parallel processing by multiple processors is done by a software engineer writing code on a case-by-case basis. This ad hoc approach is especially problematic for executing commercial transactions which are not necessarily repetitive or predictable.
Thus, while multiple processors improve overall system performance, it is much more difficult to improve the speed at which a single task, such as an application program, executes. If the CPU clock speed is given, it is possible to further increase the speed of the CPU, i.e., the number of operations executed per second, by increasing the average number of operations executed per clock cycle. A common architecture for high performance, single-chip microprocessors is the reduced instruction set computer (RISC) architecture characterized by a small simplified set of frequently used instructions for rapid execution, those simple operations performed quickly as mentioned earlier. As semiconductor technology has advanced, the goal of RISC architecture has been to develop processors capable of executing one or more instructions on each clock cycle of the machine. Another approach to increase the average number of operations executed per clock cycle is to modify the hardware within the CPU. This throughput measure, clock cycles per instruction, is commonly used to characterize architectures for high performance processors.
Processor architectural concepts pioneered in high performance vector processors and mainframe computers of the 1970s, such as the CDC-6600 and Cray-1, are appearing in RISC microprocessors. Early RISC machines were very simple single-chip processors. As Very Large Scale Integrated (VLSI) technology improves, additional space becomes available on a semiconductor chip. Rather than increase the complexity of a processor architecture, most designers have decided to use the additional space to implement techniques to improve the execution of a single CPU. Two principal techniques utilized are on-chip caches and instruction pipelines. Cache memories store data that is frequently used near the processor and allow instruction execution to continue, in most cases, without waiting the full access time of a main memory. Some improvement has also been demonstrated with multiple execution units with hardware that speculatively looks ahead to find instructions to execute in parallel. Pipeline instruction execution allows subsequent instructions to begin execution before previously issued instructions have finished.
The superscalar processor is an example of a pipeline processor. The performance of a conventional RISC processor can be further increased in the superscalar computer and the Very Long Instruction Word (VLIW) computer, both of which execute more than one instruction in parallel per processor cycle. In these architectures, multiple functional or execution units are connected in parallel to run multiple pipelines. The name implies that these processors are scalar processors capable of executing more than one instruction in each cycle. The elements of superscalar pipelined execution include an instruction fetch unit to fetch more than one instruction at a time from a cache memory, instruction decoding logic to determine if instructions are independent and can be executed simultaneously, and sufficient execution units to execute several instructions at one time. The execution units may also be pipelined, e.g., floating point adders or multipliers may have a cycle time for each execution stage that matches the cycle times for the fetch and decode stages.
In a superscalar architecture, instructions may be completed in-order and out-of-order. In-order completion means no instruction can complete before all instructions dispatched ahead of it have been completed. Out-of-order completion means that an instruction is allowed to complete before all instructions ahead of it have been completed, as long as a predefined rules are satisfied. Within a pipeline superscalar processor, instructions are first fetched, decoded and then buffered. Instructions can be dispatched to execution units as resources and operands become available. Additionally, instructions can be fetched and dispatch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selective flush of shared and other pipeline stages in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selective flush of shared and other pipeline stages in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selective flush of shared and other pipeline stages in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277797

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.