Selective deposition modeling material

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S528000, C524S296000, C524S270000, C264S401000

Reexamination Certificate

active

06476122

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a novel materials suitable for use as a selective deposition modeling material, particularly in ink jet-type or thermal stereolithography equipment. The novel materials described herein solidify quickly on cooling from a melt to self supporting solids (fast setting) while retaining other physical properties required for ink jet modeling. The modeling material contains a base material that serves as a backbone for the modeling material, a plasticizing component containing at least 10% by weight of at least one plasticizing agent that promotes fast setting and at least one tackifying resin that is compatible with the base material and the plasticizing component. The modeling materials can optionally contain more than 51% by weight of at least one reactive component, wherein at least a portion thereof having fast setting properties.
BACKGROUND OF THE INVENTION
One of the most significant advances in rapid prototype design has been the development of stereolithography process systems. Other rapid prototype systems of note are laminated object manufacturing (LOM), Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), and 3D Printing. Stereolithography produces prototype parts directly from a vat of reactive resin using three dimensional data to direct an energy source. The energy source cures successive layers of the reactive resin over selected areas to produce the three-dimensional part. Stereolithography systems have in many cases eliminated the need to manufacture tooling for short run or prototype designs and significantly shortened the design and manufacturing cycle. Stereolithography systems, however, require a relatively large vat of reactive resin and an energy source. Due to the cost of the equipment and chemical nature of the resin material, stereolithography systems are generally not practical office accessories. Hence, a relatively unfulfilled group in the field of rapid prototyping are the actual designers working in their offices. Relocating prototype manufacturing from the shop floor to the designer's office represents the next step in the evolution of rapid prototype design and manufacturing.
At least some selective deposition modeling systems can be used in an office environment to produce a prototype. Selective deposition modeling systems are known. Particular examples of selective deposition systems are the Actua 2100 Multi-jet Modeler system from 3D Systems, Inc., Valencia, Calif.; Genisys® 3D Printer™ (technology purchased from IBM) from Stratasys Corporation, Minnesota, Z402™, rapid prototyping system from Z-Corporation, Massachusetts, and the Model Maker II from Sanders, New Hampshire. The selective deposition systems described in published PCT patent application (International Publication Number WO 97/11837), which is incorporated herein by reference, to 3D Systems, Inc. is believed to represent said Actua system. In said application, the selective deposition modeling systems are described as including thermal stereolithography.
The patents directed to thermal stereolithography and extrusion modeling equipment contemplate the use of room temperature solid compositions that flow when subjected to elevated temperatures. 3D Systems, for example, discloses in their specifications for thermal stereolithography that the compositions are normally solid at room temperature, but are rendered flowable when heated above their melting points. Suggested materials are thermoplastics, hot-melt glue, wax, and cerro alloys. U.S. Pat. No. 5,695,707, column 4, lines 17-23. IBM discloses in their specifications that an extrusion system can use hot melt adhesives, mixtures of synthetic polymers, wax, resin, metallic alloys, thermoplastic polymers, thermosetting polymers, radiation- or heat-curable polymers, and mixtures thereof. U.S. Pat. No. 5,303,141, columns 6-7 (bridging).
3D Systems further discloses in a published PCT application WO 97/11837 a number of preferred formulations for selective deposition modeling comprising (examples 1-6):
a) paraffin wax having a melting point of 60° C. (20-44% by weight); b) a pure monomer hydrocarbon resin comprising a copolymer of &agr;-methylstyrene and vinyl toluene having a viscosity of 1000 centipoise at 130° C. and a softening point of 78-95° C. (20-50% by weight); c) a medium hard microcrystalline ester wax having a viscosity of 16 centipoise at 100° C. and a melting point of 78-86° C. (0-12% by weight); d) a hard microcrystalline wax having a viscosity of 16 centipoise at 100° C. and a melting point of 93° C. (5-10% by weight); e) a soft microcrystalline wax having a viscosity of 13 centipoise at 100° C. and a melting point of 69° C. (5-20% by weight); f) an ethylene-vinyl acetate copolymer having a viscosity of 575 centipoise at 140° C. and a melting point of 92° C. (2.3-25% by weight); g) an optional antioxidant (0-2% by weight); h) an optional dioctylphthalate (plasticizer) (0-2% by weight); i) an optional dioctylterephthalate (plasticizer) (0-2.5% by weight); j) an optional antioxidant (0-3% by weight); k) an optional diisononyl phthalate (plasticizer) (0-2% by weight); and 1) an optional dye or coloring compound, not used.
3D Systems discloses in the same published PCT Application an additional preferred composition containing a UV-curable component in example 7 comprising:
a) paraffin wax having a melting point of 60° C. (21% by weight); m) a methacrylate terminated polystyrene (51% by weight); c) a medium hard microcrystalline ester wax having a viscosity of 16 centipoise at 100° C. and a melting point of 78-86° C. (12% by weight); d) a hard microcrystalline wax having a viscosity of 16 centipoise at 100° C. and a melting point of 93° C. (5% by weight); e) a soft microcrystalline wax having a viscosity of 13 centipoise at 100° C. and a melting point of 69° C. (5% by weight); f) an ethylene-vinyl acetate copolymer having a viscosity of 575 centipoise at 140° C. and a melting point of 92° C. (5% by weight); and n) a photoinitiator (1% by weight). No actual physical properties for such a composition or cured article resulting therefrom are provided.
3D Systems discloses in the same published PCT Application an additional preferred composition containing an epoxy resin component (cationically curable) in example 8 comprising:
o) polyethylene oxide having an average molecular weight of 2000 (77% by weight); p) an epoxy novolac oligomer (22% by weight); and q) a cationic photoinitator (1% by weight). No actual physical properties for such a composition or cured article resulting therefrom are provided.
3D Systems discloses in the same published PCT Application an additional preferred composition containing a UV-curable component in example 9 comprising:
n) a photoinitiator (1% by weight); o) polyethylene oxide having an average molecular weight of 2000 (77% by weight); and r) a multifunctional acrylate (22% by weight). No actual physical properties for such a composition or cured article resulting therefrom are provided.
A number of patents have been issued to BPM Technology that are directed to an ink-jet type of modeling systems. The ink jet system employs a piezoelectric jet. Each of the patents suggests that an appropriate build material melts at a temperature from about 50 to 250° C., cools quickly and adheres to itself, and has a low rate of shrinkage. A preferred build material comprises a solution of a resin having a hydroxyl number of from about 5 to 100, and a molecular weight greater than about 500, dissolved in at least one primary aromatic sulfonamide. The aromatic sulfonamide allegedly provides the necessary self-adhesion properties. Phenolic resins prepared by the reaction of phenol with formaldehyde are particularly preferred as the resin. The build material can optionally further include antioxidants and flexibilizers.
Ink formulations for ink jet printers are well-known. Such inks, however, are not suitable for selective deposition modeling systems, particularly thermal stereolithography. Conventional ink formulations fail to have sufficien

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selective deposition modeling material does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selective deposition modeling material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selective deposition modeling material will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2991719

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.