Selective catalytic reduction for the removal of nitrogen...

Chemistry of inorganic compounds – Modifying or removing component of normally gaseous mixture – Nitrogen or nitrogenous component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S305000, C502S312000, C502S313000, C502S314000, C502S315000, C502S316000, C502S321000, C502S322000

Reexamination Certificate

active

06171566

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the invention
The present invention relates to a selective catalytic reduction for the removal of nitrogen oxides (NO
x
) and a catalyst body thereof. More particularly, the present invention relates to a selective catalytic reduction for the removal of nitrogen oxides, prepared from a spent catalyst composition from heavy oil upgrading facilities of an oil refinery after a hydro-desulfurization process, superior in thermal and chemical stability and economically favorable in production cost and a catalyst body comprising the same.
2. Description of the Prior Art
Nitrogen oxides are inevitably generated in the plants which employ fossil fuels, such as power plants and chemical plants. Nitrogen oxides are found to be an immediate cause of the air pollution, such as acid rain and smog, and the permissible discharge standard, therefore has recently been strengthened.
Generally, nitrogen oxides are generated upon the oxidation of nitrogen monooxides in a high temperature combustion equipment or the reaction of nitrogen with oxygen in an excess of air. To eliminate the root of nitrogen oxides, there have been made many attempts for the improvement of the combustion condition, such as low oxygen combustion and exhaust gas circulation. However, the nitrogen oxides cannot be completely eliminated only by the improvement in combustion technique and thus, there are developed and suggested various post-treatment techniques by which the exhaust; gas is deprived of nitrogen oxides.
Depending on whether a solution is used or not, techniques for denitrifying exhaust gas are classified generally into two: wet method and dry method. Now, it is known that the latter is more advantageous in investment, operation cost, and the treatment of secondary waste than the former. Of them, the most frequently used technique is the selective catalytic reduction in which nitrogen oxides are decomposed into water and nitrogen in the presence of a catalyst using ammonia as a reducing agent.
As many as tens of selectively reducing catalysts have been disclosed in patents, thus far and they are very various in types and shapes. According to a general classification, there are catalysts containing the precious metals of the platinum group, catalysts containing the oxides of metals, such as iron, cobalt, nickel and molybdenum, zeolite catalysts containing ion-exchanged copper, and catalysts consisting mainly of vanadium and titanium.
U.S. Pat. No. 3,993,572 discloses a catalyst containing a metal of the platinum group, a rare-earth metal and alumina, which is impregnated in a carrier such as ceramic honeycomb.
U.S. Pat. No. 4,018,710 discloses a catalyst comprising a cerium oxide and a nickel oxide in combination with various amounts of rhodium or ruthenium. The patent also suggests that a metal sulfide, such as copper sulfide or potassium sulfide, may be added to the catalyst in order to prevent ammonia from occurring.
U.S. Pat. No. 4,052,337 discloses a catalyst comprising a natural or synthetic zeolite ion-exchanged with copper or alkali metal, which is useful to remove nitrogen oxides in the presence of ammonia.
In U.S. Pat. No 4,010,238 is disclosed that the nitrogen oxides are selectively removed from exhaust gas by use of a metal oxide catalyst in which vanadium is combined with one selected from the group consisting of copper, zinc, tin, lead, titanium, phosphorus, chrome, iron, cobalt and nickel.
U.S. Pat. No. 4,048,112 introduces a catalyst comprising a vanadium oxide impregnated in a titanium oxide carrier of an anatase form, with which nitrogen oxides can be removed out of exhaust gas in the presence of ammonia.
U.S. Pat. No. 4,085,193 describes a catalyst in which titania is combined with at least one selected from the oxides of molybdenum, tungsten, iron, vanadium, nickel, cobalt, copper, chrome and uranium.
Although the catalysts and processes described in the above-cited patents are well known in the aspect of technical perfection and commercialization and frequently put in practice, it is widely recognized the need of a more improved catalyst when considering the thermal resistance required for the treatment of hot exhaust gas, the durability to the heavy metals or sulfur oxides of exhaust gas, the secondary pollution attributable to the use of catalyst and ammonia, and economical profit.
SUMMARY OF THE INVENTION
Intensive research repeated by the present inventors aiming to develop a cheap catalyst superior in removing nitrogen oxides out of exhaust gas resulted in the finding that the catalyst composition wasted from the heavy oil upgrading facilities of an oil refinery after a hydro-desulfurization process is capable of selectively reducing nitrogen oxides in the exhaust gas with a high efficiency.
Therefore, it is an object of the present invention to provide a selective catalytic reduction for the removal of nitrogen oxides.
It is another object of the present invention to provide the selective catalytic reduction body for the removal of nitrogen oxides, which is superior to conventional catalysts in removing the nitrogen oxides, can keep its activity high for a long time by virtue of excellent thermal resistance and poison resistance to sulfur oxides and other chemicals, exhausts un-reacted ammonia and heavy metal fly ash at the lowest amount, and allows the catalyst volume necessary to obtain the same removal degree and the pressure loss attributed to the volume to be minimized.
It is a further object of the present invention to provide a method for removing nitrogen oxides out of exhaust gas containing oxygen and nitrogen oxides to selectively reduce the nitrogen oxides into nitrogen.
In accordance with an aspect of the present invention, there is provided a selective catalytic reduction for the removal of nitrogen oxides, which has a size of about 100 to 800 mesh and comprises about 5 to 80% by weight of vanadium, about 0 to 60% by weight of molybdenum, about 0 to 20% by weight of nickel and about 0 to 20% by weight of cobalt.
In accordance with another aspect of the present invention, there is provided a selective catalytic reduction body for the removal of nitrogen oxides, which comprises about 5 to 40% by weight of vanadium, about 0.1 to 10% by weight of molybdenum, about 0.1 to 5% by weight of iron, about 0.1 to 5% by weight of nickel, about 20 to 50% by weight of alumina, and about 0.1 to 2% by weight of cobalt.
In accordance with still another aspect of the present invention, there is provided a method for removing nitrogen oxides out of exhaust gas containing oxygen and nitrogen oxides, wherein said exhaust gas is flowed through the catalyst body of the present invention at a temperature of 200 to 400° C. in the presence of ammonia, to selectively reduce the nitrogen oxides into nitrogen and water.
DETAILED DESCRIPTION OF THE INVENTION
A spent catalyst composition from heavy oil upgrading facilities of an oil refinery after a hydro-desulfurization process, typically comprises vanadium, molybdenum, nickel, cobalt, alumina and trace elements. For example, the amount of vanadium in the spent catalyst ranges from about 0 to 80%, molybdenum from about 0 to 80 %, nickel from about 0 to 20%, cobalt from about 0 to 10%, alumina from about 0 to 99% and trace elements. Besides the above components, impurities, such as moisture, oil and sulfur compounds, are present in the spent catalyst composition.
In order to convert the spent catalyst composition into a useful catalyst of the present invention, the impurities should be eliminated. For this, the spent catalyst composition is preferably heated at a temperature of about 400 to 900° C. for about 0.5 to 5 hours and then, pulverized to a powder with a size of about 100 to 800 mesh. For example, if the heating temperature is below 400° C., the impurities are incompletely removed. On the other hand, if the heating temperature is higher than 900° C., not only is energy wasted but the catalytic components in the spent catalyst composition are deleteriously affected. In addition, when the powder is less than

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Selective catalytic reduction for the removal of nitrogen... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Selective catalytic reduction for the removal of nitrogen..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selective catalytic reduction for the removal of nitrogen... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2458262

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.