Radiation imagery chemistry: process – composition – or product th – Diazo reproduction – process – composition – or product – Composition or product which contains radiation sensitive...
Reexamination Certificate
2002-05-24
2004-09-07
Chu, John S. (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Diazo reproduction, process, composition, or product
Composition or product which contains radiation sensitive...
C430S157000, C430S176000, C430S302000, C430S270100, C534S558000, C568S028000, C522S031000, C522S032000
Reexamination Certificate
active
06787281
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to selected acid generating agents useful in radiation-sensitive patterning compositions. The invention relates to such radiation-sensitive patterning compositions as well as methods of imaging radiation-sensitive elements containing such radiation-sensitive patterning compositions.
2. Brief Description of Art
Thermally sensitive, negative working printing plates are generally made with radiation-sensitive patterning compositions that are imaged on a substrate. These patterning compositions commonly contain radiation-sensitive material that is a mixture of an acid generator, a cross-linking resin or compound, a binder resin and an infrared (IR) absorber. Many of the acid generators previously employed in these patterning compositions either contain ozone depletion elements such as fluorine or contain heavy metal such as antimony (Sb) or arsenic (As), which may cause serious environmental contamination problems. Also, some of these previously used acid generators produce volatile acids (e.g., HF, HCl, HBr, HI) that can be easily volatized and lost under conditions of thermal imaging and subsequent optional baking, thereby reducing the cure rate. Such volatile acid loss decreases the efficiency of the printing plates.
Examples of these prior art acid generators are reported in the following:
U.S. Pat. No. 4,708,925 (Newman) describes a photosolubilizable composition comprising an alkali-soluble phenolic resin and an onium salt. The onium salt imparts a solvent resistance to the phenolic resin that is removed upon exposure to radiation thereby providing a solubility differential between exposed and unexposed areas of the composition. Suitable iodonium salts include iodonium, sulphonium, bromonium, chloronium, oxysulphonium, sulphoxonium, selenonium, telluronium, phosphonium and arsonium salts. Preferably the acid from which the anion is derived has a pKa<5. Suitable inorganic anions include halide anions, bisulfate, tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate and hexafluoroantimonate. Suitable organic anions include those of the formulae: R
1
COO
−
and R
1
SO
3
−
, in which R
1
is an alkyl or aryl. Again, this reference does not teach or suggest the particular acid generators of the present invention.
U.S. Pat. No. 5,372,907 (Haley et al.) describes a radiation-sensitive patterning composition comprising a mixture of (1) a resole, (2) a novolak resin, (3) a latent Bronsted acid (i.e., acid generating agent) and (4) an infrared absorber. In the specification, the latent Bronsted acids in the invention include onium salts, in particular iodonium, sulfonium, phosphonium, selenonium, diazonium and arsonium, with anions such as hexafluorophosphate, hexafluoroantimonate and trifluoromethane sulfonate. However, this reference does not disclose or suggest any latent Bronsted acids of the present invention.
U.S. Pat. No. 5,919,601 (Nguyen et al.) describes a printing plate composition comprising a thermal-activated acid generator; a cross-linking resin; a binder resin comprising a polymer containing reactive pendant groups selected from hydroxyl, carboxylic acid, sulfonamide, and alkoxymethylamide; and an infrared absorber. The composition claims that acid generator is selected from halo alkyl substituted S-triazines and salts containing an onium cation and non-nucleophilic anion, wherein the onium cation is selected from iodonium, sulphonium, phosphonium, oxysulphoxonium, oxysulphonium, sulphoxonium, ammonium and diazonium; the non-nucleophilic anion is selected from tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, triflate, tetrakis(penta-flurophenyl)borate, pentafluoroethyl sulfonate, p-methylbenzenesulfonate, ethyl sulfonate, trifluro-methylacetate and pentafluoroethyl acetate. This reference does not disclose or suggest the acid generators of the present invention.
U.S. Pat. No. 5,965,319 (Kobayashi) describes certain onium salt compounds having sulfonic acid as the counter ion to generate sulfonic acid decomposed by light or heat. These onium salts include diazonium sulfonates represented by the following structural formula:
Ar
1
—N
2
+
R
1
—SO
3
−
wherein R
1
represents a hydrocarbon group having 20 or fewer carbon atoms which may be substituted; and Ar
1
represents an aryl group having 20 or fewer carbon atoms which may be substituted. This reference does not teach or suggest any of the acid generators of the present invention.
U.S. Pat. No. 6,042,987 (Kobayashi) describes a photosensitive negative image recording material for printing plate having a image recording layer containing a compound which is degraded by the action of light or heat to generate an acid, including an onium salt having a halide, ClO
4
−
, PF
6
−
, BF
4
−
or sulfonate as a counter ion. There is no knowledge of using the compounds with formulae (I)-(III) in the invention.
WO 00/17711 (IBF Industria Brasileira De Filmes S/A) describes a composition comprising a dual polymer system, an infrared absorbing material, an acid generating compound, and an acid stabilizing compound. The acid generating compounds named therein include, as anions, chloride, bisulfate, hexafluoroantimonate, hexafluorophosphate, tetrafluoroborate, methane sulfonate and mesitylene sulfonate. However, this reference does not teach or suggest acid generating compounds in the present invention.
Huo, H.; Yang, Y.; Yang, L.; Cao, W.; Interaction of diazo resins with sodium dodecyl sulfate in aqueous solutions,
Macromol. Rapid Commun.
19, 291-294 (1998) details the behavior of diazo resins with sodium dodecyl sulfate (SDS) in aqueous solutions and in films. No mention was made to use such resins to generate acids for catalyzing acid-reactive compositions.
Yang, B.; Cao, W.; Interaction of diphenylamine diazonium salt with sodium dodecyl sulfate in aqueous solution,
J. Colloid and Interface Science
212, 190-192 (1999) reported photochemical behaviors of diphenylamine diazonium salt with sodium dodecyl sulfate in aqueous solutions. No mention was made to use such resins to generate acids for catalyzing acid-reactive compositions.
Cao, W.; Meng, Z.; Yie, T.; Zhang, D.; Yang, B.; Interaction of sodium dodecyl sulfate with polyelectrolyte complexes derived from diazo resin and sulfonate-containing polymers,
J. Polymer Science: Part A: Polymer Chemistry.
37, 2601-2606 (1999) reported the results of their studies on the interaction of sodium dodecyl sulfate with polyelectrolyte complexes derived from diazo resin and sulfonate-containing polymers in terms of aqueous solubility and thermal stability of the said complexes. No mention was made to use such resins to generate acids for catalyzing acid-reactive compositions.
Yang, B.; Luo, H.; Cao, W., The thermal decomposition of diazoresin-SDS in aqueous solution or in solid film,
J. Polym. Sco., Part A: Polym. Chem.
36, 3193-3195 (1998) is concerned with thermal stability of diazoresin-SDS in aqueous solutions or in solid films. No mention was made to use such resins to generate acids for catalyzing acid-reactive compositions.
Accordingly, there is a need for better acid generators that can be used in radiation-sensitive patterning compositions that do not contain environmental questionable elements or produce undesirable volatile acids, yet have a high photolysis efficiency and good photo sensitivity. The present invention provides a solution to that need. In particular, the present invention provides an improved cure rate, processing latitude, processing robustness and long shelf life while maintaining moderate energy requirements of the acid generation step.
BRIEF SUMMARY OF THE INVENTION
Therefore, one aspect of the present invention is directed to an acid generating agent useful for imaging photosensitive elements selected from compounds of formulae (I), (II) and (III):
wherein R
1
is selected from the group consisting of an unsubstituted and substituted hydrocarbon or aryl group;
wherein X is selected from the group co
Huang Jianbing
Tao Ting
Chu John S.
Kodak Polychrome Graphics LLC
RatnerPrestia
LandOfFree
Selected acid generating agents and their use in processes... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Selected acid generating agents and their use in processes..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Selected acid generating agents and their use in processes... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3269991