Seismic rack with extension subassembly

Supports: racks – Special article – Electrically powered

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C211S189000, C211S190000, C361S829000

Reexamination Certificate

active

06179133

ABSTRACT:

TECHNICAL FIELD
The present invention relates to racks or bays used primarily for mounting and housing telecommunications equipment, and more specifically to racks and extension assemblies designed to protect equipment mounted in such racks from forces encountered during a seismic event.
BACKGROUND ART
Telecommunications equipment racks or bays are typically installed in controlled environment vaults, central switching offices, and remote switch buildings. Many conventional racks presently found in such facilities are large and cumbersome, because there has previously been a need to accommodate bulky and heavy equipment such as copper wiring and electromechanical switching components. The overall height of a conventional rack is typically 11.5 feet, which corresponds the ceiling height of rooms in which such racks are installed. To provide strength and stability, telecommunications racks are typically bolted to the floor and tied off the ceiling superstructure, and cables and wires are run from the superstructure directly through the tops of the racks.
Because of recent advances in the telecommunications industry, including the development and use of fiber optic transmission cable and small-scale, fully electronic components, the design of racks has been scaled down. As a result, the overall height required for racks has been reduced to 9 feet and most recently has been reduced to 7 feet. However, the ceiling heights of pre-existing facilities have not changed. New 7 foot racks may be installed next to old 9 foot or 11.5 foot racks. As a result, gaps are created between the tops of the 7 foot racks and the ceiling of the facility. This is undesirable in that wires or cables running down from the ceiling superstructure to the 7 foot racks are exposed and not protected by the racks, and the racks cannot be tied off to the ceiling superstructure with the use of conventional means. It is particularly undesirable in localities where the racks must adhere to rigid industry standards regarding the ability of telecommunications racks to withstand seismic forces. For example, racks of this type must be designed to meet the BELLCORE Zone 4 seismic test set forth in Document # GR-63-CORE.
Accordingly, there is a need for a telecommunications rack which can be adapted for installation in facilities with either 7, 9 or 11.5 foot ceilings. One way to accomplish this is to provide extension assemblies that are mountable to the top of a 7 foot rack. However, the rack with the extension assembly installed thereto must still meet industry seismic standards. In addition, the industry has recommended that users of such racks refrain from installing telecommunications equipment in the extended portions of the racks. This is because the extended portions themselves are not designed to safely protect telecommunications equipment from seismic forces. Unfortunately, in order to conserve space many users often ignore this recommendation and proceed to install sensitive equipment in the extended portions, thereby increasing the risk of severe damage to costly equipment. Therefore, there is a further need to provide an extension assembly that permits the rack to comply or remain in compliance with seismic standards while preventing the installation of equipment into the extension assembly itself. Applicant has designed a rack assembly which meets all of these requirements and which is described in detail hereinbelow.
DISCLOSURE OF THE INVENTION
In one embodiment according to the present invention, a rack assembly for mounting telecommunications equipment and adapted for withstanding seismic forces is provided. The rack assembly comprises a main frame subassembly including an upper horizontal support member, a lower horizontal support member, a first vertical support member, and a second vertical support member spaced in parallel relation to the first vertical support member. The upper and lower horizontal support members are securely interposed between the first and second vertical support members. The first and second vertical support members each have a double-bend profile, defined by an inside base portion, a first medial leg and a second medial leg each extending substantially orthogonally from the inside base portion, a first distal leg extending substantially orthogonally from the first medial leg in a direction towards the second medial leg, and a second distal leg extending substantially orthogonally from the second medial leg in a direction towards the first medial leg.
The rack assembly also comprises an extension frame subassembly. The extension frame subassembly includes an upper horizontal frame member, a lower horizontal frame member, a first vertical frame member, and a second vertical frame member spaced in parallel relation to the first vertical frame member. The upper and lower horizontal frame members are securely interposed between the first and second vertical frame members, and the lower horizontal frame member is securely attached to the upper horizontal support member of the main frame subassembly. The first and second vertical frame members each have the same double-bend profile as the first and second vertical support members of the main frame subassembly.
Preferably, the first and second vertical support members and the first and second vertical frame members are constructed of high-tensile, low-alloy steel having a minimum yield strength of 50,000 psi and a 26% or greater elongation.
In another embodiment, a rack assembly comprises a base subassembly including a lower base plate having a front edge, a rear edge, a first side edge, a second side edge. A first gusset has a first outer leg extending upwardly from the lower base plate proximate to the first side edge and a first inner leg extending upwardly from the lower base plate at a location spaced inwardly from the first side edge, and a second gusset has a second outer leg extending upwardly from the lower base plate proximate to the second side edge and a second inner leg extending upwardly from the lower base plate at a location spaced inwardly from the second side edge. The first and second gussets are disposed transversely with respect to the front and rear edges. A first vertical support member is mounted to the base subassembly adjacent to the first gusset and includes an inside base portion disposed in register with the first inner leg of the first gusset. A second vertical support member is mounted to the base subassembly adjacent to the second gusset and includes an inside base portion disposed in register with the second inner leg of the second gusset.
Angle inserts are provided in the base subassembly for stability. A first angle insert includes a horizontal portion disposed on the lower base plate of the base subassembly and a vertical portion disposed adjacent to and in contact with both the first inner leg of the first gusset and the inside base portion of the first vertical support member. A second angle insert includes a horizontal portion disposed on the lower base plate and a vertical portion disposed adjacent to and in contact with both the second inner leg of the second gusset and the inside base of the second vertical support member. Fasteners or other means are provided for removably attaching the first and second angle inserts to the base subassembly without the use of welding. An upper horizontal support member is securely interposed between the first and second vertical support members, wherein the base subassembly, the first and second vertical support members, and the upper horizontal support member cooperatively define a main frame subassembly.
An extension frame subassembly is also provided as part of the rack assembly. The extension frame subassembly includes an upper horizontal frame member, a lower horizontal frame member, a first vertical frame member, and a second vertical frame member spaced in parallel relation to the first vertical frame member. The upper and lower horizontal frame members are securely interposed between the first and second vertical frame members, and the lower hor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Seismic rack with extension subassembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Seismic rack with extension subassembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seismic rack with extension subassembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2510688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.