Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation
Reexamination Certificate
2000-08-10
2003-08-26
Chaney, Carol (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
With pressure equalizing means for liquid immersion operation
C429S006000, C429S006000
Reexamination Certificate
active
06610434
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to high temperature fuel cell generators and secondary fuel depletion means, wherein depleted fuel and depleted air are kept separate from each other to allow treatment of depleted fuel by a special apparatus to generate and capture essentially pure carbon dioxide, thereby precluding the release of greenhouse gas to the environment.
2. Background Information
Tubular, solid oxide electrolyte fuel cell SOFC generators have been well known in the art for almost twenty years, and taught, for example by A.O. Isenberg in U.S. Pat. No. 4,395,468. There, in the main embodiment, oxygen (as present in air), as oxidant, was reacted at the inside “air” electrode of a closed tubular SOFC, to yield depleted air; and fuel, such as CO and H
2
, was reacted at an outside “fuel” electrode of the closed tubular SOFC to yield depleted fuel, all in a “generating chamber,” at high temperatures (that is, about 1000° C.). The air electrode generally comprised a doped lanthanum manganite, the fuel electrode generally comprised a nickel cermet and an electrolyte disposed between the electrodes generally comprised a stabilized zirconia. The depleted air and depleted fuel were subsequently completely combusted in a separate, but attached preheating chamber, to preheat feed air. This basic SOFC generator design was carried forward, with other improvements, as shown for example in U.S. Pat. Nos. 4,664,986; 5,573,867; and 5,733,675 (Draper et al.; Zafred et al.; and Dederer et al.). Other designs have used a series of fuel cell stacks, each providing a stage containing a different electrolyte operating at a lower temperature to improve fuel gas utilization, as taught in U.S. Pat. No. 5,712,055 (Khandkar). In a somewhat similar fashion, in one embodiment of U.S. Pat. No. 5,134,043 (Nakagawa), “depleted fuel” from a molter carbonate fuel cell system is sent to a separate molten carbonate anode, where the product was then mixed/contacted with oxidant/air before being introduced into the cathode section of the first molten carbonate electrolyte fuel cell. While tubular fuel cells are emphasized herein, flat/planar fuel cells, which are well known in the art, may also be used.
However, such designs could release byproducts of combustion, such as carbon dioxide into the atmosphere. Efforts are now being made on an international level to globally reduce the release of so-called “green house gases” which includes carbon dioxide, which may contribute to global atmospheric warming. Such efforts may, indeed, lead to future legislation regarding carbon dioxide emissions from SOFCs. What is needed is a means to further treat the spent fuel from fuel cell generators to not only reduce or eliminate carbon dioxide emissions, but also to increase the capacity of the fuel cell generators to further utilize feed fuel, thereby producing more electricity. Such a need applies to both tubular and flat plate type fuel cells.
In the area of reducing carbon dioxide emissions from power plants utilizing a variety of types of fuel cells, in order to reduce the “green house effect”, U.S. Pat. No. 4,751,151 (Healy et al.) taught a carbon dioxide absorber, such as monoethanolamine, including a regenerable absorbent, for stripping carbon dioxide followed by subsequent cooling and compression. In U.S. Pat. No. 5,064,733 (Krist et al.), recognizing prior art conversion of natural gas into carbon dioxide and water—with the accompanying creation of a DC electrical current—in a solid oxide fuel cell, taught conversion of the carbon dioxide and water to C
2
H
4
, C
2
H
6
and C
2
H
2
by use of a copper, copper alloy or perovskite cathode. That cathode was in contact with the CO
2
, and H
2
O and a dual layered anode made of metallic oxide perovskite next to the electrode with an outer contacting layer of rare earth metallic oxide contacting CH
4
. This provided for concurrent gas phase electrocatalytic oxidative dimerization of methane at an anode on one side of a solid electrolyte and reduction of carbon dioxide to gaseous hydrocarbons at a cathode on the other side of the solid electrolyte. Other CO
2
treatments include U.S. Pat. No. 5,928,806 (Olah et al.), where a regenerative fuel cell system containing two electrochemical cells in fluid communication were taught, one cell oxidizing an oxygenated hydrocarbon, such as methyl alcohcl, formic acid, etc., to CO
2
and H
2
O and a second cell reducing CO
2
and H
2
O to an oxygenated hydrocarbon. This produced methyl alcohol and related oxygenates directly from CO
2
. Also, U.S. Pat. No. 5,866,090, (Nakagaua et al.) taught treating carbon dioxide effluent, from an energy plant which uses fuel cells, with lithium zirconia at over 450° C., to produce lithium carbonate and zirconia.
While a great many methods to treat carbon dioxide are known, a new fuel cell generator design is needed to allow segregation of the carbon dioxide for such treatment.
SUMMARY OF THE INVENTION
Therefore it is a main object of this invention to yield an improved fuel cell generator design, allowing segregation of carbon dioxide generated at the fuel electrodes.
It is a further object of this invention to yield an improved Generator design allowing ultra high fuel utilization.
These and other objects are accomplished by providing a high temperature fuel cell generator comprising a separate generator chamber containing tubular solid oxide electrolyte fuel cells, which operate on oxidant and fuel to yield depleted oxygen and depleted fuel, and a separate depleted fuel reactor chamber containing a depleted fuel reactor and operating at a potentially different temperature than the generator chamber, where all oxidant and fuel passages are separated and do not communicate directly with one another, so that fuel and oxidant remain effectively separated, and where a depleted fuel exit is provided in the depleted fuel reactor chamber for exiting a gas consisting essentially of carbon dioxide and water for further treatment, and where at least one exit is provided for depleted oxidant to exhaust to the environment.
The invention also comprises a high temperature fuel cell generator, comprising: a housing defining and separating a generator chamber, a separate depleted fuel reactor chamber, and a depleted oxidant discharge chamber; a plurality of fuel cells, each having an electrolyte contacted on one side by an air electrode and on the other side by a fuel electrode said fuel cells disposed within the generator chamber; a depleted fuel reactor disposed in the depleted fuel reactor chamber; means to flow a feed fuel gas to contact the fuel electrode of fuel cells in the generator chamber, where said fuel can react and yield partially depleted fuel gas; means to flow a feed oxidant gas to contact the air electrode of fuel cells in the generator chamber, where said oxidant can react and yield a depleted oxidant gas; means to flow partially depleted fuel gas from the generator chamber to contact the depleted fuel reactor in the depleted fuel reactor chamber, where said depleted fuel can further react and yield a completely depleted fuel gas consisting essentially of carbon dioxide and water; and means to flow oxidant gases to the depleted fuel reactor chamber to contact the depleted fuel reactor, in order to deplete fuel to near or total completion; where depleted oxidant gases are kept separated from all depleted fuel gases and said depleted oxidant gases for the generator chamber and the depleted fuel reactor chamber flow into at least one separate depleted oxidant exit.
The invention also covers a method of operating a high temperature fuel cell generator comprising a separate generator chamber, and a separate depleted fuel reactor chamber, containing a depleted fuel reactor, with at least the generator chamber containing solid oxide fuel cells containing a solid electrolyte disposed between an air electrode and a fuel electrode which operate on oxidant and fuel gases, comprising the steps: (1) feeding feed fuel gas to contact fuel electrodes of
Draper Robert
Kothmann Richard E.
Veyo Stephen E.
Chaney Carol
Siemens Westinghouse Power Corporation
Yuan Dah-Wei
LandOfFree
Segregated exhaust SOFC generator with high fuel utilization... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Segregated exhaust SOFC generator with high fuel utilization..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Segregated exhaust SOFC generator with high fuel utilization... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3126225