Segmented kinetic energy explosively formed penetrator assembly

Ammunition and explosives – Shells – Focused or directed detonation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C102S307000, C102S501000

Reexamination Certificate

active

06510797

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to the field of ballistics, and it particularly relates to explosively formed projectiles (EFP). More specifically, this invention relates to a segmented, multi-liner, kinetic energy explosively formed penetrator, to achieve greater penetration.
BACKGROUND OF THE INVENTION
The concept of using explosive energy to deform a metal plate into a coherent penetrator while simultaneously accelerating it to extremely high velocities offers a unique method of employing a kinetic energy penetrator without the use of a large gun. A typical explosively formed projectile (EFP) is comprised of a metallic liner, a case, an explosive section, and an initiation train. Very often there is also a retaining ring to position and hold the liner-explosive subassembly in place. EFP warheads are normally designed to produce a single massive, high velocity penetrator. After detonation, the explosive products create enormous pressures that accelerate the liner while simultaneously reshaping it into a rod or some other desired shape. The EFP then hits the target at a high speed, delivering a significantly high mechanical power.
Two major applications have evolved for explosively formed projectiles or warheads, namely, long-standoff sensor-fuzed submunitions and medium standoff, close-overflight missiles. The former application, which is the more traditional one, requires the formation of a single-piece EFP capable of flying in a stable fashion to the target. This refinement has led to the flared EFP rod and, more recently, to the finned EFP rod designs.
For the medium or short-standoff applications, a new type of EFP was developed. The need for an aerodynamic shape is not necessary for these applications because of the short distance the EFP must travel, hence, the length of the rod was increased and the flared tail was eliminated from the design. In fact, some of these rods are purposely stretched beyond their breaking point and fracture into several pieces resulting in greater total length.
An EFP warhead configuration may be comprised of a steel case, a high-explosive charge, and a metallic liner. Explosively formed penetrator (EFP) warheads have been designed to project a single massive high velocity penetrator to attack the top of armored vehicles. Such armor perforation capability needs further improvement to counter new generations of harder armored vehicles, without resorting to a larger caliber weapon system. In developing a warhead configuration that meets system constraints and also meets performance requirements, several parameters in the warhead configuration must be redesigned to achieve an optimum configuration. Several warhead configurations have been developed to accommodate varying system constraints.
SUMMARY OF THE INVENTION
It is an object of the present invention to satisfactorily address the foregoing need and to form a new segmented, multi-liner, kinetic energy projectile by stacking several liners in a single warhead, for effectively producing a longer penetrator capable of greatly enhancing penetration. Each individual liner forms a separate penetrator, so that the liners are successively fired and allow for a greater overall target penetration.
In one embodiment, the flight path of at least one liner is diverted from the flight paths of the other liners, so that the liners could attack several adjacent targets or provide multiple penetrations. Potential targets include tanks, light armored vehicles, ships, submarines, ballistic missiles, aircraft and bunkers.
The foregoing and additional features of the present invention are realized by an explosively formed penetrator warhead that incorporates several, for example 10 separate liners. Each liner forms a separate penetrator of a given length with each penetrator spaced on a common trajectory for multiple hits for increased effectiveness against reactive or multiple plate targets. The trajectory of each penetrator could also be diverted to impact over an area. The individual liners can be fabricated from various materials including copper, iron, and tantalum, and others discussed below.
The liners can have different masses and curvatures to control their velocity, separation and trajectory. Through the use of various liner materials, incendiary follow-through effects could be introduced. The use of various buffer materials between liners can vary the separation distances.
In another embodiment, the EFP assembly includes two sections: an initial precursor penetrator followed by a penetrator that encapsulates a reactive material. This will greatly enhance the lethality of the warhead against certain targets, and particularly targets consisting of multi layers or multi compartments. These targets will initially be perforated by the precursor penetrator with the second follow through penetrator containing a reactive material causing internal damage through a secondary reaction. Potential targets include tanks, ships, ballistic missiles, aircraft and bunkers.
The EFP warhead or assembly of the present invention is comprised of the following major components: a copper liner, a reactive material, an explosive billet or charge, a backplate, an aluminum housing, and a detonator assembly for initiating the explosive billet. When the explosive billet is initiated by the detonator assembly, it causes the liner to be accelerated forward with the outer edges folding forward to form or mold the reactive material in a desired aerodynamic shape. The forward folding penetrator then separates into two sections, a precursor and a follow through penetrator. The precursor impacts and penetrates the target with the follow through penetrator containing a reactive material entering the target and causing a secondary reaction.
According to still another embodiment of the present invention, the EFP assembly has the additional capability of utilizing a single warhead that incorporates multiple hits mechanisms. In one specific embodiment of the EFP assembly, one of the expelled liners contains the reactive material
70
which further destroys, or neutralizes, or otherwise reacts with, whatever it comes into contact with.
In this latter embodiment, the EFP assembly includes multiple liners that are separated by multiple separators. The separators are non-symmetrically disposed relative to each other, in order to divert the liners toward multiple targets. The liners could fold either forwardly or rearwardly, or they could maintain their original or another desired shape along their respective trajectories. The liners are diverted from a reference trajectory because the separators impart different angles to the liners.
When the explosive shock wave comes in contact with the angled separators, the normal pressure forces are translated at their respective angles of deviation from the reference trajectory, to the next liner in the configuration, causing the latter liner to be propelled towards its designated target at that given angle of deviation.
According to another embodiment of the present invention, the liners can be deviated from a reference trajectory, by varying the densities or other characteristics of the liners. The variable densities of the seperators (or liners) vary the separation distances between them.
According to still another embodiment, the separators can have varying thicknesses in order to vary the separation thicknesses between the liners.


REFERENCES:
patent: 4841864 (1989-06-01), Grace
patent: 5033387 (1991-07-01), Lips
patent: 5753850 (1998-05-01), Chawla et al.
patent: 5792980 (1998-08-01), Weimann
patent: 6186070 (2001-02-01), Fong et al.
patent: 6250229 (2001-06-01), Kerdraon et al.
patent: 6308634 (2001-10-01), Fong

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Segmented kinetic energy explosively formed penetrator assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Segmented kinetic energy explosively formed penetrator assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Segmented kinetic energy explosively formed penetrator assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3047048

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.