Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or... – The polynucleotide contains a tissue – organ – or cell...
Reexamination Certificate
2002-09-05
2004-11-30
Ibrahim, Medina A. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Method of introducing a polynucleotide molecule into or...
The polynucleotide contains a tissue, organ, or cell...
C800S278000, C800S298000, C800S295000, C800S320000, C800S317000, C800S306000, C800S312000, C435S468000, C435S320100, C536S024100
Reexamination Certificate
active
06825398
ABSTRACT:
The present invention relates to the field of plant genetics. More specifically, the present invention relates to seed specific gene expression.
Seeds provide an important source of dietary protein for humans and livestock. However, the protein content of seeds is often incomplete. For example, many seed proteins are deficient in one or more essential amino acids. This deficiency may be overcome by genetically modifying the native or non-native proteins to have a more nutritionally complete composition of amino acids (or some other desirable feature) and to overexpress the modified proteins in the transgenic plants. Alternatively, one or more genes could be introduced into a crop plant to manipulate it's metabolic pathways and modify the free amino acid content. These approaches are useful in producing crops exhibiting important agronomic traits, and nutritional, and pharmaceutical properties.
Despite the availability of many molecular tools, the genetic modification of seeds is often constrained by an insufficient accumulation of the engineered protein. Many intracellular processes may impact the overall protein accumulation, including transcription, translation, protein assembly and folding, methylation, phosphorylation, transport, and proteolysis. Intervention in one or more of these processes can increase the amount of protein produced in genetically engineered seeds.
Introduction of a gene can cause deleterious effect on plant growth and development. Under such circumstances, the expression of the gene may need to be limited to the desired target tissue. For example, it might be necessary to express an amino acid deregulation gene in a seed-specific fashion to avoid an undesired phenotype that may affect yield or other agronomic traits.
The promoter portion of a gene plays a central role in controlling gene expression. Along the promoter region, the transcription machinery is assembled and transcription is initiated. Transcription initiation at the promoter may be regulated in several ways. For example, a promoter may be induced by the presence of a particular compound, express a gene only in a specific tissue, or constitutively throughout the plant. Thus, transcription of a coding sequence may be modified by operably linking the coding sequence to promoters with different regulatory characteristics.
SUMMARY OF THE INVENTION
The present invention includes promoters capable of generating seed specific transcription, and methods of modifying, producing, and using the same. The invention also provides compositions, transformed host cells, transgenic plants, and seeds containing the high-expression promoters, and methods for preparing and using the same.
The present invention includes and provides a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14 and complements thereof, and nucleic acid sequences that hybridize under stringent conditions to any of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof. The present invention includes and provides a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence that exhibits an identity to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof of greater than about 90%, operably linked to a structural nucleic acid sequence, wherein the promoter is heterologous with respect to the structural nucleic acid sequence.
The present invention includes and provides a method of transforming a soybean plant comprising: providing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, and nucleic acid sequences that hybridize under stringent conditions to any of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, operably linked to a structural nucleic sequence; and transforming the plant with the nucleic molecule.
The present invention includes and provides a method of transforming a soybean plant comprising: providing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, and nucleic acid sequences that hybridize under stringent conditions to any of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof of greater than about 90%, operably linked to a structural nucleic acid sequence, wherein the promoter is heterologous with respect to the structural nucleic acid sequence.
The present invention provides a method of expressing a structural nucleic acid molecule in a seed comprising: growing a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, and nucleic acid sequences that hybridize under stringent conditions to any of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, operably linked to the structural nucleic acid molecule, wherein the transformed plant produces the seed and the structural nucleic acid molecule is transcribed in the seed; and isolating the seed.
The present invention provides a method of obtaining a seed enhanced in a product of a structural gene comprising: growing a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, and nucleic acid sequences that hybridize under stringent conditions to any of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, operably linked to the structural nucleic acid molecule, wherein the transformed plant produces the seed and the structural nucleic acid molecule is transcribed in the seed; and isolating the seed from the transformed plant.
The present invention provides a method of obtaining meal enhanced in a product of a structural gene comprising: growing a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, and nucleic acid sequences that hybridize under stringent conditions to any of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof, operably linked to the structural nucleic acid molecule, wherein the transformed plant produces the seed and the structural nucleic acid molecule is transcribed in the seed; and preparing the meal comprising said transformed plant or part thereof.
The present invention provides a method of obtaining feedstock enhanced in a product of a structural gene comprising: growing a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence that hybridizes under stringent conditions with a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements thereof operably linked to the structural nucleic acid molecule, wherein the transformed plant produces the seed and the structural nucleic acid molecule is transcribed in the seed; and preparing the meal comprising the transformed plant or part thereof.
The present invention provides a method of obtaining oil enhanced in a product of a structural gene comprising: growing a transformed plant containing a nucleic acid molecule that comprises in the 5′ to 3′ direction: a promoter having a nucleic acid sequence that hybridizes under stringent conditions with a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 11, 12, 13 and 14, and complements there
Dubois Patrice
Wang Qi
Ibrahim Medina A.
Monsanto Company
Renessen LLC
LandOfFree
Seed specific 7S&agr; promoter for expressing genes in plants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Seed specific 7S&agr; promoter for expressing genes in plants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seed specific 7S&agr; promoter for expressing genes in plants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3310977